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Abstract. We present the results of modernization 

of the Irkutsk Incoherent Scatter Radar’s control and 
acquisition system. The modernization was carried out 
using results of space experiments Plasma–Progress and 
Radar–Progress involving Progress cargo spacecraft. 
The modernization has improved the accuracy of radar 
measurements of low-orbit spacecraft. For example, 
with a signal-to-noise ratio equal to10, the accuracy of 

range and angle measurements is 100–300 m and 1–5 
arc min. 

Keywords: radar, Irkutsk Incoherent Scatter Radar, 
Plasma–Progress and Radar–Progress space experi-
ments. 
 
 

 

 

INTRODUCTION 

One of the main tasks of space experiments (SE) 
Plasma–Progress (2007–2009) [http://www.energia.ru/ 
rus/iss//researches/geophis-13. html; Lebedev et al., 
2008; Potekhin et al., 2009] and Radar–Progress (2010–
2015) [http://knts.tsniimash.ru//ru/site/Experiment_q. 
aspx?idE=183; Khakhinov et al., 2013] was to analyze 
the effect of exhaust jets from liquid propellant engines 
on the radio image of a low-orbit spacecraft by comparing 
reflection characteristics of Progress cargo spacecraft hav-
ing operative and inoperative engines. A distinctive feature 
of the SE is a weak ionospheric effect of exhaust jets (the 
amount of exhaust products from 2 to 11 kg). 

Reflection characteristics of Progress cargo spacecraft 
(CS) were measured with the Irkutsk Incoherent Scatter 
Radar (IISR) [Zherebtsov et al., 2002; Lebedev et al., 
2013]. During the SE, IISR’s digital control and acquisi-
tion system (DCAS) was upgraded in several stages to 
improve methods for acquiring and processing the coordi-
nate and reflection characteristics of the spacecraft. 

The SE sessions were held during the Progress CS 
autonomous flight after undocking from the ISS. When 
the Progress CS was within the field of view of the ra-
dar, the onboard liquid propellant engines started. From 
session to session, the direction of exhaust jet, the direc-
tion of solar illumination of exhaust plume, and the di-
rection of jet velocity relative to the geomagnetic field 
vector varied. Simultaneously with parameters of the 
rocket exhaust-induced ionospheric disturbances, we 
recorded background undisturbed values of ionospheric 
parameters along the sounding path. 
 

1. THE IRKUTSK INCOHERENT 
SCATTER RADAR 

The Irkutsk Incoherent Scatter Radar is a unique sci-
entific instrument in Russia based on the equipment of 

the radar station Dnepr. IISR is a monostatic pulse radar 
with frequency scanning. The range of the radar’s oper-
ating frequencies is 154–162 MHz; the peak power, 
achieved with two transmitters, is 2.8 MW; the sound-
ing pulse duration is from 70 to 900 μs; the pulse repeti-
tion rate is 24.4 Hz; the antenna gain is ~35 dB. The 
main difference between IISR and other radars of this 
type lies in the design features of its antenna. 

 
2. STAGES OF MODERNIZATION  
OF THE IRKUTSK INCOHERENT 
SCATTER RADAR 

2.1. Features of DCAS modernization until 
2008 

The progress in diagnostic capabilities of IISR be-
tween 2003 and 2008 was facilitated by the radical 
modernization of the entire system of control, recep-
tion, and acquisition devices and signal processing 
facilities in order to make full use of the radar poten-
tial and design features of its antenna. The main task 
of the modernization was to provide the following ra-
dar capabilities: 

1) measuring parameters of ionospheric plasma simul-
taneously in several directions to study its spatially inho-
mogeneous structure; 

2) simultaneous measurements without amplitude 
distortions of power signals from SC or coherent echo 
against weak incoherent scatter signals; 

3) controlling the shape of the antenna pattern (AP) 
and making interferometric measurements; 

4) automatically detecting the presence of coherent 
signals on the radar scan, providing the possibility of 
making an automatic decision to change the operating 
mode; 

5) increasing spatial resolution and expanding the 
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vertical range of ionospheric measurements by using 
optimum sounding signals and eliminating signals re-
flected from local objects from the radar scan; 

6) making soft copies of the total volume of raw 
sounding data to ensure selection of a secondary pro-
cessing method adequate for changing tasks and envi-
ronmental conditions; 

7) processing a large ionosphere and satellite 
sounding dataset. 

Accomplishing the tasks at hand required the devel-
opment of a new DCAS, which includes 

 a multichannel receiver; 
 a digital system for synchronizing and generating 

operating frequencies; 
 a system for automatic transmitter phasing; 
 a system for recording the shape of a transmitted 

pulse; 
 a high-speed device for acquiring signals and 

controlling the radar; 
 a distributed computer system for secondary pro-

cessing of sounding data. 
This DCAS was employed in all experiments con-

ducted with IISR in 2007–2012 [Potekhin et al., 2008]. 

2.2. Features of DCAS modernization for the 
Radar–Progress SE 

With the beginning of the first Radar–Progress SE 
sessions, as well as to solve current problems of moni-
toring the spacecraft, new requirements to this DCAS 
were formulated: 

 the accuracy of matching to the global naviga-
tion/timing systems should be no worse than 1 μs; 

 digital receivers with a reception bandwidth of up to 
1 MHz, a dynamic range of 60 dB, a linear and highly stable 
phase-frequency characteristic of the receiving path in the 
required reception bandwidth, a programmable gain; 
 

 the capability of generating complex sounding sig-
nals and their sequences. 

To solve these problems in IISR's DCAS, we had to 
 integrate a high-precision GPS receiver into the con-

trol system; 
 apply modern chips to synthesizers of radio frequen-

cies, which enable us to specify durations, frequencies, and 
types of manipulation of sounding signals (AM, FM, LFM); 

 modify the control unit to operate the GPS receiver 
and new synthesizers; 

 use modern digital receivers to expand the dy-
namic range and ensure the linearity of PFC of the 
receiving path; 

 eliminate “redundant” analog units such as mul-
tipliers by 8 and the receiving unit at the second inter-
mediate frequency; 

 install a system of online processing of received sig-
nals, reflected from the spacecraft, into IISR's computing 
system. 

In the SE sessions in 2011, a new Digital Down 
Converter (DDC) and a new timing system began to be 
installed. The digital receiver is a separate system for 
acquiring radio signals, which is based on up-to-date 
components and allows us to digitize, demodulate, pro-
cess, and store received signals in a given frequency 
band. This system utilized a single-purpose, computer 
board Insys ADP64Z2APCI and a submodule of digital 
acquisition ADMDDC416x100M with basic parameters 
listed in Table 1. 

The DDC submodule was connected to the outputs 
of the receiving unit and acquired a signal at the first 
intermediate frequency of 18.75 MHz, thus allowing us 
to discard some analog units and second intermediate 
frequency. At the same time, the software control of the 
submodule's parameters enabled us to change IISR's 
operating modes in a timely and flexible manner. 

Table 1 
Digital receiver parameters 

Parameter Value 

Number of ADC channels 4 

Number of DDC channels 4 

ADC capacity 16 bits 

DDC chip type Texas Instruments GC5016 

Frequency range of input signals 2–140 MHz 

ADC maximum sampling rate 105 MHz 

Spurious Free Dynamic Range (SFDR) for F=21.4 MHz 85 dB 

Signal/noise ratio (SNR) for F=21.4 MHz 71 dB 

Input impedance 50 Ohm 

Input range ±0.5 V 
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2011, April 
25 
500 

2011, August 
sequence of two 13-element phase-shift 
signals (at different operating frequencies) 
transmitted in one sounding pulse 

442+442 

1000 

6) receiver: analog-digital, 
one intermediate frequency; 
7) ADC+DDC: 100 MHz 
clock frequency, 85 dB dy-
namic range; 

2012, April 
2012, August 
2013, April 
2013, June 

sequence of two flat signals in one sound-
ing pulse; in the next pulse, a chirp signal is 
transmitted, 
498.891 MHz/s frequency tuning rate  442+442  

902 
(LFM) 

8) timing: GPS, 10–6 s accu-
racy  

2014, April 
2014, July 

sequence of two flat signals in one 
sounding pulse; in the next pulse, a chirp 
signal is transmitted; the tuning rate is 
407.452 MHz/s 

9) operating frequency synthe-
sizer: AD9958; ~40 MHz op-
erating frequency range; 
10) frequency multiplier unit: 
x4; 

 
The basic logic of control signal generation is im-

plemented in CPLD. Input signals for it are repre-
sented by a clock frequency of 100 MHz from the 
OCXO oscillator and an external synchropulse Tk0 
with a repetition rate of 24.4 Hz. All other service 
signals for different IISR units are formed from these 
two signals. The CPLD matrix has internal control 
registers accessible to MCU, thus facilitating flexible 
generation of sequences of synchrosignals depending 
on experimental conditions, for example, a quick 
shift of the position of the “Start ADC” signal on the 
time scan of transmission–reception cycles in each 
sounding pulse to gain information from different 
vertical ranges. The synchronizing system provides a 
precise phase matching of all signals to the OCXO 
reference oscillator. 

The synchronizing subsystem with a unified precise 
time scale is based on a high-stable GPS receiver Trimble 
Thunderbolt. Connection with this receiver is also estab-
lished through MCU. Via the serial interface, it gets current 
date/time, and due to the high-precision pulse per second 
(PPS) it syncs all the transmission–reception cycles up to 
10–6 s. This makes it possible to substantially increase the 
synchrony of all observation modes in such a complicated 
experiment as Radar–Progress. 

 
3. IISR OPERATING MODES 

The Radar–Progress SE involves two main operating 
modes of IISR: 

 ionospheric observation mode; 
 spacecraft monitoring mode. 
The ionospheric observation mode serves to detect a 

signal scattered from ionospheric plasma in a vertical 
range 150–1200 km. Signals are emitted by two phased 
transmitters with a pulse power of 1.2 MW each. DCAS 
generates two probing pulses with durations of 700 and 
200 μs, one of which is filled with a 5-element Barker 
code with a spatial resolution of 6 km. The digital re-
ceiver and the acquisition system record separate time 
scans of a received signal in four independent channels 
with bandwidths of 125 and 250 kHz respectively. Re-
ceived signals from narrowband channels are used to 
obtain ion and electron temperatures and plasma drift 

velocities [Potekhin et al., 2008; Shcherbakov et al., 
2015]; signals from broadband channels serve as the 
basis for constructing vertical electron density profiles 
of ionospheric plasma [Alsatkin et al., 2015]. 

The spacecraft monitoring mode involves scanning a 
specific sector in the IISR AP in order to detect and track 
an object. In this sector, Progress CS onboard engines are 
switched on and off. DCAS turns on this mode by the 
time the CS enters the IISR scanning sector minus DT 
seconds and turns it off when the CS exits the scanning 
sector plus DT seconds; DT ranges from 15 to 30 sec-
onds. The scanning area and the number of operating 
frequencies N (AP azimuths) involved in scanning de-
pend on the geometry of the experiment, i.e. on the area 
of intersection of the scanning sector and the CS ephem-
eris. All parameters (time, frequency, waveforms, receiv-
ing interval length, ADC and DDC parameters) are calcu-
lated in advance and downloaded using configuration 
files to the DCAS control software.  

During all the SEs, simultaneously with IISR up-
grading, we tried sounding signals of different types. 
Table 2 lists stages and types of signals used in a given 
period. In April 2012, an alternating mode comprising 
signals of two types was adopted for spacecraft monitor-
ing: two flat (unmodulated) signals and one signal with 
chirp filling, lasting for 442+442 and 902 microseconds 
respectively. Rectangular signals allows us to determine 
the range, radial velocity, and, rather roughly, angles. The 
chirp signal facilitates a high-precision identification of the 
antenna azimuth, as well as the range and the antenna ele-
vation angle. The joint use of signals of the two types pro-
vides the most complete and accurate set of flight path 
information. 

 
4. RESULTS  
OF THE MODERNIZATION 

After being modernized, IISR’s DCAS features the 
following capabilities. 

The programmable logic allows us to flexibly 
change the operating modes of the radar systems ac-
cording to the tasks set in the experiments, without cre-
ating any new or modified hardware units.  
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After the modernization, it became possible to use 
chirp signals, which can significantly improve the accu-
racy of range and angle measurements: with a signal-to-
noise ratio of 10, the range accuracy is 100–300 m, the 
angle accuracy is 1–5 arcmin. By comparison, the accu-
racy of measurements in the experiments until 2010 at 
the same signal-to-noise ratio was 1.5 km in range and 
30–60 arcmin in angles. At present, the modernized 
DCAS identifies path parameters in real time, whereas 
before the modernization the processing took a long 
time and had several stages. The achieved accuracy in 
measuring path parameters in real time enabled us to 
solve the problem of pointing the telescope, installed in 
the Sayan Solar Observatory of ISTP SB RAS, at low-
orbit spacecraft, using IISR data. 

 
CONCLUSION 

The modernization of IISR’s digital control and acqui-
sition system during the Plasma–Progress and Radar–
Progress space experiments made from 2007 to 2015 has 
improved the accuracy of identification of path parameters 
of low-orbit spacecraft and has expanded the capabilities of 
this system for future measurements. The use of the mod-
ern hardware components led to the unification of all 
DCAS units and opened prospects for further moderniza-
tion of IISR, unique instrument of national significance 
No. 01-28 included into the worldwide network of radars 
of this type. 

Other results of the Plasma–Progress and Radar-
Progress SE, obtained with IISR, are reported in [Lebe-
dev et al., 2011; Khakhinov et al., 2012; Borisov et al., 
2012; Khakhinov et al., 2012; Korsun et al., 2014]. 
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