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Abstract. As shown within the gyrokinetic
framework, drift-compressional waves can propagate in
the magnetosphere in the direction of energetic electron
drift. The plasma is assumed to be composed of cold
particles with an admixture of hot protons with a
Maxwell distribution and electrons with an inverted
distribution. The conditions of existence of such waves
and their intensification due to resonance interaction
with energetic electrons (drift instability) have been de-

termined. The results can be helpful in interpreting
observation of wave phenomena in the magnetosphere
with frequencies in the range of geomagnetic pulsations
Pc5 and below.
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INTRODUCTION

Magnetospheric plasma exhibits a wide spectrum of
ultralow-frequency (ULF) oscillations, also called
geomagnetic pulsations. They are identified with
magnetohydrodynamic (MHD) waves. From both
observational and theoretical viewpoints, they can be
divided into two large groups: waves with small values
of azimuthal wave number m and waves with large
values of m [Yeoman et al., 1992; Leonovich, Mazur,
1993; Fenrich et al., 1995].

Waves with small m values have predominantly
toroidal polarization, i.e. the wave magnetic field lines
oscillate in the azimuthal direction. They have large
azimuthal dimensions and can be observed with ground-
based magnetometers. They are sometimes called
transverse large-scale oscillations. Usually these waves
are identified with Alfvén modes whose sources are
located in the outer magnetosphere. A fast
magnetosonic (FMS) wave, originated from the
magnetopause or the solar wind, is assumed to
propagate into the inner magnetosphere, where it
generates an Alfvén mode in the field line resonance, at
which the FMS wave frequency coincides with the local
eigenfrequency of the field line resonance [Chen,
Hasegawa, 1974; Southwood, 1974].

Waves with large values of the azimuthal wave
number have largely poloidal polarization, i.e. the wave
magnetic field lines oscillate in the radial direction.
They have small azimuthal dimensions and represent
more local events than oscillations with small m. These
waves can be called transversely small-scale. They are
usually identified with poloidal Alfvén modes. The
waves are believed to arise from processes occurring in
the inner magnetosphere. Due to ionospheric shielding,
geomagnetic pulsations with large azimuthal wave
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numbers can be experimentally studied only with the aid
of artificial Earth satellites or radars.

Among the waves with large m in the Pc5 range
there is a group of storm-time compressional
oscillations whose frequencies can be much lower than
the fundamental frequency of Alfvén resonance in the
given L shell. Such oscillations can be recorded both by
satellites [Barfield, McPherron, 1972] and by ground-
based radars [Allan et al., 1982].

There is still no consensus on the physical nature of
the storm-time compressional Pc5 pulsations. According
to the magnetohydrodynamic theory, this should be the
lowest-frequency mode — the slow magnetosonic mode.
However, it is not entirely clear whether the MHD
approximation is valid for describing oscillations with
frequencies much lower than the Alfvén range in a
collisionless plasma since in this case bounce
frequencies should be taken into account, which can
correctly be done only with the kinetic approach
[Hurricane et al., 1994 ]. Storm-time Pc5 pulsations are
sometimes associated with drift mirror modes, which
are kinetic in nature [Kremser et al., 1981, Pokhotelov
et al., 2001]. Still, satisfying mirror instability
conditions requires strong temperature anisotropy in
magnetospheric plasma.

In our opinion, drift-compressional modes are best
suited for interpreting most storm-time compressional
Pc5 pulsations. They are the most common
compressional modes in kinetics since they demand for
their existence only finite plasma pressure and
inhomogeneity across magnetic shells. In this case, the
instability of the drift-compressional modes can arise
from spatial gradients of hot plasma density [Crabtree et
al., 2003; Klimushkin, Mager, 2011], inverted
distribution of hot proton energy [Mager et al., 2013], or
from the coupling with the Alfvén mode due to
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magnetic field line curvature [Klimushkin et al., 2012].
By the inverted distribution is meant the nonmonotonic
velocity distribution with its maximum in the high-
energy part of spectrum, by analogy with [Hughes et al.,
1978]. A characteristic feature of drift-compressional
waves is the dependence of their frequency on the
azimuthal wave number. A similar behavior pattern has
been found in radar data [Mager et al., 2015; Chelpanov
et al., 2016].

It has been shown that the drift-compressional
modes propagating in the direction of the drift of high-
energy protons interact resonantly with them. As
temperature increases and particle density decreases
with distance away from Earth, this can cause instability
and a spontaneous increase in waves whose phase
velocity direction coincides with the proton drift
direction [Mager et al., 2013]. The instability threshold
is lowered if the proton distribution function is inverted.
However, as shown in [James et al., 2013], in some
cases there are waves propagating in the opposite
direction, i.e. in the electron drift direction. Therefore,
in this paper we study the situation in which the wave
propagates in the electron drift direction. Here, we
assume that there are hot protons and electrons in
plasma, the latter having an inverted energy distribution.

MODEL OF ENVIRONMENT
AND BASIC EQUATIONS

We use an axially symmetric model of the
magnetosphere, which takes into account the field line
curvature and the background plasma inhomogeneity
across magnetic shells and along field lines. To do this,
we introduce an orthogonal coordinate system {x', x’,
x’} such that the coordinate x' coincides with the
magnetic shells, x* indicates a magnetic field line
(azimuthal coordinate), and x* is a field line point; g,
&, and g are respective coordinates of a metric tensor;

dl = \lg,dx’ is the length element along the field line

[Leonovich, Mazur, 1989]. Taking into account the
curvature and field-aligned inhomogeneity of the
magnetic field makes particles trapped in the
magnetosphere.

We consider plasma with an admixture of hot
protons and electrons. Since the contribution of cold
particles to the total plasma pressure is small, we
consider only the contribution of hot particles. Here we
assume that the protons have a Maxwell energy
distribution:
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and the hot electrons have an inverted distribution and
are modeled by the following function:
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Here, n, and n. are proton and electron densities
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respectively; e= ©7/2 is the mass-normalized particle
energy; V is the particle velocity; S is the positive
integer; G (...) is the gamma function; g, and g, are
the parameters proportional to the squared thermal
velocity of particles. Hereafter, the indices “p” and “e”
are the proton and electron variables respectively.

Note that with $=0, electron distribution function (2)
becomes the Maxwell distribution. For $>0, electrons

have the mean particle energy &, =(S+3/2)g, and

energy at maximum g, = Sg .
We employ the axially symmetric model of the
magnetosphere. The dependence of disturbed

parameters on time and coordinates is represented as
exp[—imt i k(' + ikzxz],

where o is the wave frequency; k; and k; are the radial
and azimuthal wave vector components respectively.

Plasma oscillations with a frequency less than the
gyrofrequency of plasma particles can be considered
within a gyrokinetic framework in the WKB
approximation [Chen, Hasegawa, 1991]. In the
approximation in which the wave frequency is much
less than the bounce frequency of particles, an equation
describing the drift-compressional mode can be derived
from the gyrokinetic equations presented in [Chen,
Hasegawa, 1991]. However, unlike previous works
[Crabtree et al., 2003, Klimushkin, Mager, 2011; Mager
et al., 2013] which took a wave whose direction of
propagation coincided with the proton direction k, <0,
i.e. to the west, we consider the case where the wave
propagates east, in the electron drift direction £,>0.

Thus, we study the electron wave—particle
resonance: in the equation for the drift-compressional
mode, the sign in the resonant denominator of the term
describing the contribution of hot protons changes to
positive, i.e. no wave-particle resonance exists for
protons, but it exists for electrons, and the sign in their
resonant denominator becomes negative:
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b (1) = 4mm, ( —"—p(uby (D) )+
+ 0y,
i “ 3)
+4nme< Qf u(ub(l))>.
0= 0y



Kostarev D.V., Mager P.N.

Here by is the longitudinal component of the wave
magnetic field; |l| is the distance along the field line

from the magnetic equator to a given point; <> is the

velocity space integral:

<> = 4nj(...)£dud8;
[oi

m is the average over the bounce period T:
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where £/, denotes the reflection points on the ionosphere
for particles with energy & and magnetic moment

u=v. /(2B); m, and m. are the proton and electron

masses respectively; O, is the drift frequency:
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where v and v, are the longitudinal and transverse

particle velocities; 17; is the particle magnetic drift

velocity; o, = eB/m, . is the gyrofrequency; R is the

A

magnetic field curvature radius. The operator O is
determined as follows:

Qp,e :wi—‘r s Lo

Here, the sign “+” indicates protons; the sign “—” marks
electrons.
After changing variables & p—& A such that

k:sinza:uBO/a, o is the pitch angle, By is the
magnetic field at the equator, & =./e/¢g,, equation (3)
can be represented as

By
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correspond to the diamagnetic frequencies ®" = k LV*,

where V" is the velocity of the particle diamagnetic
drift driven by the radial gradient of plasma density or
temperature; Q, =m,g,/¢ 1is the bounce-period-
averaged drift frequency of particles with energy &;

Bo is the parameter describing the ratio of plasma
pressure to magnetic pressure at the equator; L is the
particle path length for the bounce period:

L, =vr, =4[ u(l. 1) "dl.

In the dipole magnetic field, L, and Q4 weakly depend
on A L, ~13-056\A and Q, ~0.35+0.15/n

[Hamlit et al., 1961]. Therefore, we assume that A is
independent of A. Then, in Equation (4) we can take A
outside the integrals. Next, we can carry out a number
of transformations, as in [Mager et al., 2013], and obtain
a second-kind homogeneous Fredholm integral equation
with a symmetric kernel. This equation can be solved
numerically. In this case, we get sets of eigenfunctions
by and eigenvalues Ay in the integral equation, which
determine the field-aligned structure and
eigenfrequencies of drift-compressional modes. As
shown in [Mager et al., 2013], drift-compressional
modes are localized sy the vicinity of the geomagnetic
equator. This agrees with satellite data on compressional
Pc5 pulsations [Higuchi, Kokubun, 1988].

EIGENFREQUENCIES
AND INSTABILITY CONDITIONS

The eigenfrequencies are determined from the
dispersion relation A (@)=Ay, i.e.
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[Walker, 2005],
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Now, to find the eigenfrequencies and possible
instability increments, we represent the wave frequency
as o=wmyt+iy. We consider the real part of frequency as

being much larger than the imaginary part: o, > 7.
Suppose o =€, / de , then, by changing variables

in Expression (8), we can rewrite the dispersion relation
L ®

as
b, B o 3Be
b, A””"[“QJ 2, f( J

The parameter o represents the ratio of electron
energy to proton energy: o =m.g, /mpsop. For

(11)

simplicity, we take hot proton and electron densities,
which contribute to plasma pressure, as being equal.
Then, o can be represented as

_3B 1
2B, (S+3/2)
If we consider the case close to the ring current

conditions, then we can say that the proton energy is
much higher than the electron energy, i.e. oo <1 and,

accordingly, P,/B, <1. Then, we can expand the
function f; (ow)/ Qde) of Expression (11) in the small

parameter a.. Neglecting all terms such that the power of
o is greater than 1, we get

P
o,
! —a— 3 L (12)
2 Q, (2 Q
To find an analytical solution, we expand

fe((o/ Qdc) in the small parameter for two extreme

cases:
(co/QdC < l) and much greater than (co/Qdc > l) of

when the eigenfrequency is much less than

the electron drift frequency.

EIGENFREQUENCY MUCH LESS
THAN ELECTRON DRIFT FREQUENCY:
0/Q, =1

If we expand Z (, o/ Q. ) in the small parameter

0/Q; <lin f, (co 1€y, ) and neglect all terms where
the power of ®/€; is 2 or more, considering them

small, we derive the expression
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Then, for the case when the wave eigenfrequency is
much less than the electron magnetic drift frequency,
and the proton energy is much greater than the electron
energy, the dispersion relation takes the form

Lﬁ :i{w:p +(D;p J_lai{§+ Q)j,p }_

B, " o4, Q) 2 Q2 Q
3_o, (13)
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From (13), we derive the eigenfrequency expression:
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3_ O 19
470, 20,

To find the increment, we calculate the imaginary
part of dispersion relation (11), apply the expansion in
the small parameter to the plasma dispersion function,
and neglect the terms in the denominator, where the
power of ®/Q is 2 and more:

54512 oy
T & e Qde
Q,
TN T (543/2)
Y P Y
Q, o, Q. 29,
x : . . (15)
3_On 1%
4 0, 29

From eigenfrequency expression (14) it follows that
the wave can exist in plasma without particle
temperature and density gradients. Equations (14) and
(15) also show that without these gradients the
instability occurs only for the inverted distribution
(8#0). In this case, ©/Q; -S5<0, then

Vi < Vd(azaemx ) Hence, in the absence of plasma

gradients the instability can occur if the wave phase
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velocity is lower than the mean particle magnetic drift
velocity in the bump in the inverted distribution.
The wave existence conditions for ®/Q, <1 from

(14) are as follows:

3 0o, 10,
——— >0,
4 Q 2Q
. . ' (16.1)
Lb 3 ws (’On 3B 0‘): ('0:
W —|+——| —+——|>0
Bp 4 de de 2Bp Qdc Qdc
or
3o, 10,
——————1 <0,
4 Q 20,
N { ()
L, 3o, o, | 3p ([0 o
~A, ——| —/+— |+ ——| —+—|<0.
Bp 4 de de 2Bp Qdc Qdc

The instability y> 0 takes place for (16.1) with

(D* (D* (D*
Oy gl oD | B 3% (17.1)
Q, Q, ) o 29
and for (16.2) with
oy o,
O gl oD | Bn 3% (17.2)
Q, Q, ) o 29

In the equatorial parabolic approximation for the
dipole magnetic field for the first harmonic N=1, we can

take that A, =0.5/L and pre = 2m\2L, where L is

the distance to the magnetic shell in the equatorial plane
[Mager et al., 2013]. Then

’ ’
. kz‘c'op n, . kzgop &,
O =" = _
Ty L > €p L >
o, L n, o, L&
’
3k280p * kzg()c I’le
4 T O T T
’ . L o, L n,
P ) 18
ke, € 3k,e (1%)
198 &, 280,
0)ge ———L—, 4~ Iz .
(‘occ 8Oc (Dcc

Wave conditions (16) for the first harmonic in the
parabolic approximation for the magnetic field can be
written as

(19.1)

'
€ n’

Ll —=4< >0’
SOC n,
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i+2£ L <0,

2L n, n,
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Instability condition (17) in this approximation is for

(19.1)
g/ '3 g
&_ i+ % +£_§&<O (201)
Q, L g | n 2¢
and for (19.2)
g ' €
O gt 3 B me 38 (20.2)
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Thus, waves with frequencies much less than the
electron magnetic drift frequency can propagate in the
electron drift direction if condition (19.1) or (19.2)
holds. This is possible even in the absence of plasma
temperature or density gradients, i.e. only due to
magnetic field inhomogeneity. At the same time, these
waves can growth if the electron temperature and
density gradients correspond to condition (20.1) for
(19.1) and to (20.2) for (19.2).

The instability can exist for the Maxwell distribution
of electron energy due to the temperature and density

gradients S=0. n;/n, #0,&, /g, #0. Without these

gradients, the instability can be caused by the inverted
distribution of electron energy S#0,
ngln =0, /g =0), ny/n, =0, & /g =0. The
greatest increase in the wave occurs with

multidirectional radial gradients of electron temperature
and density.

EIGENFREQUENCY FAR
EXCEEDING ELECTRON DRIFT
FREQUENCY: 0/Q; >1

If we expand Z (, |o/ Qy ) in the small parameter

Q, /o<1 in f ((D/Qde) and neglect all terms such

(O]

<

that the power of €, /® is 2 or more, considering
them small, we obtain the expression
O

o, o, o,
f. l—— || =y |,
Q. Q) 9 Q

Thus, in the case when the wave eigenfrequency is
much greater than the electron drift frequency and the
proton energy is much greater than the electron energy,
the dispersion relation is expressed as:

Q,

23

21)

(@)

€e

* * *
O || Lo ) e
e Qdc Qdc

Q,

(’JZPJ 1 o [3 @;pJ
—+— |——a—| =+ +
Q ] 2 Q. (2 Q
3B

el ]

From (21) we derive the eigenfrequency expression:
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To find the increment, we again use the expansion in
the small parameter and neglect the terms in the
denominator, where the power of Q, /® is 2 and

more:
S+512 @
n[%] e
Q,
T T (s 132)
[ o _SJ[I_(O;J_@; 30, @3)
Q, o, ) Q. 20,
X
5430 (s+3)-] :
4 o, "2 20,

Expression (22) shows that the wave, as for
®/€, <1, canexist in the absence of the gradients.

For the wave to exist, the following conditions
should hold

3 0, (3] 10,
S+———| S+—|—— >0,
4 Q 2) 2Q,
L p . (24.1)
Lb 3 (DE (Dn 3 B 0)8 0\)”
~A, | = — || ——+——|>0
Bp 4 de de 2 Bp Qdc Qdc
or
3 o 3) 19,
S+ s+ |-—— <0,
Qd 2 d
. p (24.2)
L 3 o, o, 3 03: co:
i A, ——| —+— +—Bc ~+—— <0
Bp 4 de de 2 Bp Qde Qde
The instability condition from (23) for (24.1) is
® o, ®, 3o,
=L - l-— | —+——-<0 (25.1);
Q Q, | Q 2Q,
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and for (24.2),

3 (Dge
20,

e
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c

Q,,

n,

> 0.

+

(25.2)

In the parabolic approximation of magnetic field for
the first harmonic N=1, the wave existence conditions
can be written as

€
S+Ej+
4
_(_p
S+§J+
4

4mf2 %, m
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Be | 2o 1
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The instability condition for (26.1) is
®, 3 &, | n
Qg L g ) n
and for (26.2),
o, 3 &, | n 3%,
Qdc L . n, 2 &,
Waves with frequencies much greater than the
electron magnetic drift frequency ®/Qy >1 exist

p

’
_ 3%,

2g,

<0 @27.1);

>0. (27.2)

€9

when the proton temperature and density gradients
satisfy condition (26.1) or (26.2). As for ®/ Q, <1,

the wave can exist in the absence of such gradients. The
instability develops if the electron temperature and
density gradients meet condition (27.1) for (26.1) and
(27.2) for (26.2).

RESULTS OF NUMERICAL
CALCULATIONS

To make numerical calculations, we take
Be/Bp=0.1. We plot (Figures 1 and 2) exact solutions of
dispersion relation (11) represented as

Be

3
+_
28,
for various parameters of plasma gradients and its
inversion. The wave can exist at oy when Ref{wy)>0
and Imf{@y)=0 since prAN /B, is a positive and real

Lb
floy)= 1, (aoy) fe(wN)ZB—pAN, (28)

p

value. On the plots, the positive Ref{w) values are
marked with red color; negative ones, for which there
are no solutions, with blue color. Isolines in the region

24

of positive values correspond to Ref (0)=L, Ay /B,.

The thick line indicates Imf{®)=0. Thus, to solutions
of dispersion relation (28) correspond intersection
points of isolines Ref{w) in the region of positive
values with the line Imf{®)=0.

Figure 1, a shows that the line Imf{)=0 intersects

the isolines L, A, /B, where Im((o Q. ) <0. We can

conclude that in the absence of gradients and inverted
electron energy distribution, the instability cannot exist.
The same conclusion can be drawn if we substitute the
corresponding  values a(')p /g, =0, n/n, =0,

&, /€, =0, n;/n, =0, S=0 and analyze Expressions

(19.1), (26.1) and (20.1), (27.1). As may be inferred
from (19.1), (26.1), the wave can exist; however, from
(20.1), (27.1) it follows that the instability is not
realized because inequalities (20.1) and (27.1) fail. If we
add the inverted distribution (Figure 1, b), we get a
situation, where the line Imf{w)=0 intersects the isolines

L, Ay /B, in the region with Im(m/Qdc)>0 and

Ref(wy)>0, i.e. all conditions, under which the plasma
instability occurs, hold. If we substitute the respective

' _ ' _ ' _
&, /ssOp =0, n,/n, =0, &, /€, =0,

n./n,=0, §=1 in (19.1) and (20.1), the inequalities
hold, and hence the wave can be increased.

The instability can also exist for the Maxwell
distribution of electron energies (Figure 2, a), but in the
presence of particle temperature and density gradients,
the inverted distribution (Figure 2, b) strengthens the
instability. Note that for the numerical calculations we
use the formula without approximation with respect to
co/Qdc. The Figures show that the instability has a

values

maximum increment when the eigenfrequency of the
drift-compressional mode is close to the electron drift
frequency.

Also note that since plasma Earth’s
magnetosphere is usually cold, i.e. p>1, the above
results only illustrate that the instability can exist
because we consider hot plasma with f<1. At small 3

in

values, even for the fundamental harmonic
L, Ay =44if  N=1, L, Ay/B,>1;  therefore,
®,/Qy >1, is the closest parameter to real
magnetospheric  plasma  parameters  (asymptotic

expressions (22) and (23)). As an example, we find the
fundamental frequency of the drift-compressional mode
for L=6.6Rg, assuming, for simplicity, that temperature
and density gradients are small. Suppose that the
electron energy at the maximum of the inverted
distribution &, =10 keV, the azimuthal wave number

k>=70 and the parameters B.,$,=0.1, B,=0.5.
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Figure 1. Solutions of dispersion relation (28) for various plasma parameters (in the parabolic approximation for the
magnetic field): s;p /g, =0, n/n, =0, e, /8, =0, nl/n =0, $=0 (a); sgp /e, =0, nln, =0, g, /&, =0,
n. /n, =0, S=1(b). Here, X =Re(03/Q 0. ), Y =Im(c0/Q o, ), the isolines in the region of positive values correspond to prAN/Bp
; the points of their intersection with the bold line, the solutions ®,, /€ 0" The step of the change in prA ~ /B, isrepresented to
the right of each plot

a

08 4

o eamaan

%

2 2 3 z 5 3 35 4 45 5 55 6
X X

Figure 2. Same as in Figure 1 for the following plasma parameters: €, /g, =0.3L", ' /n =03L", € /g, =15L",
’ - ’ -1 ’ -1 ! -1” P ’ ’ ¢ ¢
ne/ne:—l.SLl, S=0 (a); &, /g, =03L", nin =03L", & /g =15L", n /n,

P P c e

=-15L", S=1 (b)
Neglecting the gradients, we get that the instability

The instability occurs if in model inverted electron
arises when §>®,/€Q, . For the chosen plasma

distribution (2) $>59. For the calculations, we put S=60

parameters it is casy to show that o,/Q, S 1: (Figure 3).5 InI this case, ﬁ)=1.62 mHz, the increment
] ¢ y=4.8-10" s, and y/f ¢=3-10". Note that across the

therefore, we determine the frequency ®, and the i hell with the Alfvé loci B

instability increment vy, using Expressions (22) and (23)  8'Ven L-shell with the Alfvén velocity V4=1000 kmys,

respectively. For small gradients, we obtain the fundamental frequency of Alfvén resonance is '~7.7
mHz. Thus, the frequency of the drift-compressional

o =0 L& A ( S+ 3 ) wave turns out to be lower than the Alfvén resonance

0 dp B, N 4) frequency. At smaller values of the azimuthal wave

number k, , the drift-compressional wave frequency is

o )77 -y © even less as being directly proportional to k. The
T Qio e 0 resulting ratio of the increment to the eigenfrequency is
de

-0 ) close to the values obtained in [Hughes et al., 1978] for
o r(S+3/2) (“3)
4

Alfvén waves, generated by the bounce drift instability,
and to the damping decrement on the ionosphere.
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Figure 3. Model distribution function of hot electrons (2)
with g, = 10 keV, B=0.05, S=60

CONCLUSION

The results allow us to conclude that drift-
compressional waves can propagate not only in the
proton drift direction (to the west) [Crabtree et al., 2003,
Klimushkin, Mager, 2011, Mager et al., 2013], but also
in the electron drift direction (to the east). These waves
can also exist in the absence of plasma temperature and
density gradients. In this case, the wave phase velocity
should be less than the mean particle magnetic drift
velocity in the bump. Propagating in the electron drift
direction, these waves can be increased due to resonant
interaction with electrons, i.e due to drift instability.
This instability may develop at certain electron and
proton temperature and density gradients or because of
the inverted electron energy distribution.

For the magnetic shell L=6.6Rg, we have
demonstrated that frequencies of drift-compressional
waves can be lower than eigenfrequencies of magnetic
tube oscillations: at V,=1000 km/s, the fundamental
frequency of Alfvén resonance is 7.7 mHz, and the
drift-compressional wave frequency with the azimuthal
wave number k,=70 is 1.6 mHz. Because of the resonant
interaction of the wave with hot electrons, its amplitude
increases with an increment of 0.03 to the frequency.

Our results can be helpful in interpreting
observations of wave phenomena with frequencies in
the range of Pc5 geomagnetic pulsations and below. For
example, in [James et al., 2013], SuperDARN data have
been used to statistically analyze ULF oscillations
occurring during substorm activity; it has been shown
that in addition to the waves propagating in the proton
drift direction (to the west), there are waves running in
the electron drift direction (to the east). In this case,
periods of some of these waves considerably exceed
those of Pc5 pulsations. Most likely these waves are not
Alfvén — they are probably drift-compressional, running
in the electron drift direction, and increased due to
resonant interaction with energetic electrons injected
into the magnetosphere during substorms.

The work was supported by RFBR grant No. 16-05-
00254a.
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