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Abstract. As shown within the gyrokinetic 
framework, drift-compressional waves can propagate in 
the magnetosphere in the direction of energetic electron 
drift. The plasma is assumed to be composed of cold 
particles with an admixture of hot protons with a 
Maxwell distribution and electrons with an inverted 
distribution. The conditions of existence of such waves 
and their intensification due to resonance interaction 
with energetic electrons (drift instability) have been de-  

termined. The results can be helpful in interpreting 
observation of wave phenomena in the magnetosphere 
with frequencies in the range of geomagnetic pulsations 
Pc5 and below. 
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INTRODUCTION 

Magnetospheric plasma exhibits a wide spectrum of 
ultralow-frequency (ULF) oscillations, also called 
geomagnetic pulsations. They are identified with 
magnetohydrodynamic (MHD) waves. From both 
observational and theoretical viewpoints, they can be 
divided into two large groups: waves with small values 
of azimuthal wave number m and waves with large 
values of m [Yeoman et al., 1992; Leonovich, Mazur, 
1993; Fenrich et al., 1995]. 

Waves with small m values have predominantly 
toroidal polarization, i.e. the wave magnetic field lines 
oscillate in the azimuthal direction. They have large 
azimuthal dimensions and can be observed with ground-
based magnetometers. They are sometimes called 
transverse large-scale oscillations. Usually these waves 
are identified with Alfvén modes whose sources are 
located in the outer magnetosphere. A fast 
magnetosonic (FMS) wave, originated from the 
magnetopause or the solar wind, is assumed to 
propagate into the inner magnetosphere, where it 
generates an Alfvén mode in the field line resonance, at 
which the FMS wave frequency coincides with the local 
eigenfrequency of the field line resonance [Chen, 
Hasegawa, 1974; Southwood, 1974]. 

Waves with large values of the azimuthal wave 
number have largely poloidal polarization, i.e. the wave 
magnetic field lines oscillate in the radial direction. 
They have small azimuthal dimensions and represent 
more local events than oscillations with small m. These 
waves can be called transversely small-scale. They are 
usually identified with poloidal Alfvén modes. The 
waves are believed to arise from processes occurring in 
the inner magnetosphere. Due to ionospheric shielding, 
geomagnetic pulsations with large azimuthal wave  

numbers can be experimentally studied only with the aid 
of artificial Earth satellites or radars. 

Among the waves with large m in the Pc5 range 
there is a group of storm-time compressional 
oscillations whose frequencies can be much lower than 
the fundamental frequency of Alfvén resonance in the 
given L shell. Such oscillations can be recorded both by 
satellites [Barfield, McPherron, 1972] and by ground-
based radars [Allan et al., 1982]. 

There is still no consensus on the physical nature of 
the storm-time compressional Pc5 pulsations. According 
to the magnetohydrodynamic theory, this should be the 
lowest-frequency mode – the slow magnetosonic mode. 
However, it is not entirely clear whether the MHD 
approximation is valid for describing oscillations with 
frequencies much lower than the Alfvén range in a 
collisionless plasma since in this case bounce 
frequencies should be taken into account, which can 
correctly be done only with the kinetic approach 
[Hurricane et al., 1994 ]. Storm-time Pc5 pulsations are 
sometimes associated with drift mirror modes, which 
are kinetic in nature [Kremser et al., 1981, Pokhotelov 
et al., 2001]. Still, satisfying mirror instability 
conditions requires strong temperature anisotropy in 
magnetospheric plasma. 

In our opinion, drift-compressional modes are best 
suited for interpreting most storm-time compressional 
Pc5 pulsations. They are the most common 
compressional modes in kinetics since they demand for 
their existence only finite plasma pressure and 
inhomogeneity across magnetic shells. In this case, the 
instability of the drift-compressional modes can arise 
from spatial gradients of hot plasma density [Crabtree et 
al., 2003; Klimushkin, Mager, 2011], inverted 
distribution of hot proton energy [Mager et al., 2013], or 
from the coupling with the Alfvén mode due to 
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magnetic field line curvature [Klimushkin et al., 2012]. 
By the inverted distribution is meant the nonmonotonic 
velocity distribution with its maximum in the high-
energy part of spectrum, by analogy with [Hughes et al., 
1978]. A characteristic feature of drift-compressional 
waves is the dependence of their frequency on the 
azimuthal wave number. A similar behavior pattern has 
been found in radar data [Mager et al., 2015; Chelpanov 
et al., 2016]. 

It has been shown that the drift-compressional 
modes propagating in the direction of the drift of high-
energy protons interact resonantly with them. As 
temperature increases and particle density decreases 
with distance away from Earth, this can cause instability 
and a spontaneous increase in waves whose phase 
velocity direction coincides with the proton drift 
direction [Mager et al., 2013]. The instability threshold 
is lowered if the proton distribution function is inverted. 
However, as shown in [James et al., 2013], in some 
cases there are waves propagating in the opposite 
direction, i.e. in the electron drift direction. Therefore, 
in this paper we study the situation in which the wave 
propagates in the electron drift direction. Here, we 
assume that there are hot protons and electrons in 
plasma, the latter having an inverted energy distribution. 

 
MODEL OF ENVIRONMENT  
AND BASIC EQUATIONS 

We use an axially symmetric model of the 
magnetosphere, which takes into account the field line 
curvature and the background plasma inhomogeneity 
across magnetic shells and along field lines. To do this, 
we introduce an orthogonal coordinate system {x1, x2, 
x3} such that the coordinate x1 coincides with the 
magnetic shells, x2 indicates a magnetic field line 
(azimuthal coordinate), and x3 is a field line point; g1, 
g2, and g3 are respective coordinates of a metric tensor; 

3
3dl g dx is the length element along the field line 

[Leonovich, Mazur, 1989]. Taking into account the 
curvature and field-aligned inhomogeneity of the 
magnetic field makes particles trapped in the 
magnetosphere. 

We consider plasma with an admixture of hot 
protons and electrons. Since the contribution of cold 
particles to the total plasma pressure is small, we 
consider only the contribution of hot particles. Here we 
assume that the protons have a Maxwell energy 
distribution: 
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and the hot electrons have an inverted distribution and 
are modeled by the following function: 
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Here, np and ne are proton and electron densities 
respectively; ε= v2/2 is the mass-normalized particle 

energy; V is the particle velocity; S is the positive 

integer; G (...) is the gamma function; 
p0  and 

e0  are 

the parameters proportional to the squared thermal 
velocity of particles. Hereafter, the indices “p” and “e” 
are the proton and electron variables respectively. 
Note that with S=0, electron distribution function (2) 
becomes the Maxwell distribution. For S>0, electrons 
have the mean particle energy  

ee 03 / 2S     and 

energy at maximum 
max ee 0 .S    

We employ the axially symmetric model of the 
magnetosphere. The dependence of disturbed 
parameters on time and coordinates is represented as 

1 1 2
1 2exp ( ) ,i t i k x dx ik x        

where ω is the wave frequency; k1 and k2 are the radial 
and azimuthal wave vector components respectively. 

Plasma oscillations with a frequency less than the 
gyrofrequency of plasma particles can be considered 
within a gyrokinetic framework in the WKB 
approximation [Chen, Hasegawa, 1991]. In the 
approximation in which the wave frequency is much 
less than the bounce frequency of particles, an equation 
describing the drift-compressional mode can be derived 
from the gyrokinetic equations presented in [Chen, 
Hasegawa, 1991]. However, unlike previous works 
[Crabtree et al., 2003, Klimushkin, Mager, 2011; Mager 
et al., 2013] which took a wave whose direction of 
propagation coincided with the proton direction k2 <0, 
i.e. to the west, we consider the case where the wave 
propagates east, in the electron drift direction k2>0. 

Thus, we study the electron wave–particle 
resonance: in the equation for the drift-compressional 
mode, the sign in the resonant denominator of the term 
describing the contribution of hot protons changes to 
positive, i.e. no wave-particle resonance exists for 
protons, but it exists for electrons, and the sign in their 
resonant denominator becomes negative: 
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Here b|| is the longitudinal component of the wave 
magnetic field; l  is the distance along the field line 

from the magnetic equator to a given point; ...  is the 

velocity space integral: 

... 4 (...) ;
B

d d   
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(...)  is the average over the bounce period τb: 
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where ±l0 denotes the reflection points on the ionosphere 
for particles with energy ε and magnetic moment 

2 / (2 );B  u mp and me are the proton and electron 

masses respectively; 
p, ed is the drift frequency: 
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where v|| and v are the longitudinal and transverse 

particle velocities; dV


 is the particle magnetic drift 

velocity; 
p, e p, e/c eB m   is the gyrofrequency; R is the 

magnetic field curvature radius. The operator Q̂  is 

determined as follows: 
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Here, the sign “+” indicates protons; the sign “–” marks 
electrons. 
After changing variables ε, μ→ξ,  such that 
=sin2=μB0/ε ,   is the pitch angle, B0 is the 

magnetic field at the equator, 0/ ,     equation (3) 

can be represented as 
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correspond to the diamagnetic frequencies ,k V 
 
 

where V 


 is the velocity of the particle diamagnetic 
drift driven by the radial gradient of plasma density or 
temperature; d d 0 /      is the bounce-period-

averaged drift frequency of particles with energy ε0;  
0 is the parameter describing the ratio of plasma 
pressure to magnetic pressure at the equator; Lb is the 
particle path length for the bounce period: 

0 1
b b 0

4 ( , ) .
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In the dipole magnetic field, Lb and d weakly depend 

on : b 1.3 0.56L    and d 0.35 0.15    

[Hamlit et al., 1961]. Therefore, we assume that  is 
independent of . Then, in Equation (4) we can take  
outside the integrals. Next, we can carry out a number 
of transformations, as in [Mager et al., 2013], and obtain 
a second-kind homogeneous Fredholm integral equation 
with a symmetric kernel. This equation can be solved 
numerically. In this case, we get sets of eigenfunctions 
bN and eigenvalues N in the integral equation, which 
determine the field-aligned structure and 
eigenfrequencies of drift-compressional modes. As 
shown in [Mager et al., 2013], drift-compressional 
modes are localized in the vicinity of the geomagnetic 
equator. This agrees with satellite data on compressional 
Pc5 pulsations [Higuchi, Kokubun, 1988]. 

 
EIGENFREQUENCIES 
AND INSTABILITY CONDITIONS 

The eigenfrequencies are determined from the 
dispersion relation Λ (ω)=ΛN, i.e.  
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Now, to find the eigenfrequencies and possible 
instability increments, we represent the wave frequency 
as ω=ω0+iγ. We consider the real part of frequency as 
being much larger than the imaginary part: 0 .    
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in Expression (8), we can rewrite the dispersion relation 
as 
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The parameter  represents the ratio of electron 
energy to proton energy: 
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To find an analytical solution, we expand 

 ee d/f    in the small parameter for two extreme 

cases: when the eigenfrequency is much less than 
 ed/ 1    and much greater than  ed/ 1    of 

the electron drift frequency.  
 

EIGENFREQUENCY MUCH LESS 
THAN ELECTRON DRIFT FREQUENCY: 

edω /Ω = 1 

If we expand  ed/Z    in the small parameter

ed/ 1    in  ee d/f    and neglect all terms where 

the power of 
ed/   is 2 or more, considering them 

small, we derive the expression 
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Then, for the case when the wave eigenfrequency is 
much less than the electron magnetic drift frequency, 
and the proton energy is much greater than the electron 
energy, the dispersion relation takes the form 
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From (13), we derive the eigenfrequency expression: 
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To find the increment, we calculate the imaginary 
part of dispersion relation (11), apply the expansion in 
the small parameter to the plasma dispersion function, 
and neglect the terms in the denominator, where the 
power of ed/   is 2 and more: 
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From eigenfrequency expression (14) it follows that 
the wave can exist in plasma without particle 
temperature and density gradients. Equations (14) and 
(15) also show that without these gradients the 
instability occurs only for the inverted distribution 
(S0). In this case, 

ed/ 0,S     then 

 maxph d e .V V     Hence, in the absence of plasma 

gradients the instability can occur if the wave phase 

velocity is lower than the mean particle magnetic drift 
velocity in the bump in the inverted distribution. 

The wave existence conditions for 
ed/ 1    from 

(14) are as follows: 
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or 
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The instability γ> 0 takes place for (16.1) with  
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and for (16.2) with 
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In the equatorial parabolic approximation for the 
dipole magnetic field for the first harmonic N=1, we can 

take that 1 0.5 / L   and 
p, eb 2 2 ,L L   where L is 

the distance to the magnetic shell in the equatorial plane 
[Mager et al., 2013]. Then  
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Wave conditions (16) for the first harmonic in the 
parabolic approximation for the magnetic field can be 
written as 
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Instability condition (17) in this approximation is for 
(19.1) 
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 (20.1) 

and for (19.2) 
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Thus, waves with frequencies much less than the 
electron magnetic drift frequency can propagate in the 
electron drift direction if condition (19.1) or (19.2) 
holds. This is possible even in the absence of plasma 
temperature or density gradients, i.e. only due to 
magnetic field inhomogeneity. At the same time, these 
waves can growth if the electron temperature and 
density gradients correspond to condition (20.1) for 
(19.1) and to (20.2) for (19.2). 

The instability can exist for the Maxwell distribution 
of electron energy due to the temperature and density 
gradients S=0. e eе e 0 0/ 0, / 0.n n      Without these 

gradients, the instability can be caused by the inverted 
distribution of electron energy S0, 

e eе e 0 0/ 0, / 0),n n      p p/ 0,n n   
p p0 0/ 0.    The 

greatest increase in the wave occurs with 
multidirectional radial gradients of electron temperature 
and density. 

 
EIGENFREQUENCY FAR 
EXCEEDING ELECTRON DRIFT 
FREQUENCY: 

edω / Ω 1  

If we expand  ed/Z    in the small parameter 

ed / 1   in  ee d/f    and neglect all terms such 

that the power of 
ed /   is 2 or more, considering 

them small, we obtain the expression 
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Thus, in the case when the wave eigenfrequency is 
much greater than the electron drift frequency and the 
proton energy is much greater than the electron energy, 
the dispersion relation is expressed as: 
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 (21) 

From (21) we derive the eigenfrequency expression: 
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To find the increment, we again use the expansion in 
the small parameter and neglect the terms in the 
denominator, where the power of 

ed /   is 2 and 

more: 
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 (23) 

Expression (22) shows that the wave, as for 

ed/ 1,    can exist in the absence of the gradients. 

For the wave to exist, the following conditions 
should hold 
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or 
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The instability condition from (23) for (24.1) is 
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and for (24.2),  
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In the parabolic approximation of magnetic field for 
the first harmonic N=1, the wave existence conditions 
can be written as 
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 (26.1) 

or 
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 (26.2) 

The instability condition for (26.1) is  
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 (27.1); 

and for (26.2), 
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Waves with frequencies much greater than the 
electron magnetic drift frequency 

ed/ 1    exist 

when the proton temperature and density gradients 
satisfy condition (26.1) or (26.2). As for 

ed/ 1,    

the wave can exist in the absence of such gradients. The 
instability develops if the electron temperature and 
density gradients meet condition (27.1) for (26.1) and 
(27.2) for (26.2). 

 
RESULTS OF NUMERICAL 
CALCULATIONS 

To make numerical calculations, we take 
e/p=0.1. We plot (Figures 1 and 2) exact solutions of 
dispersion relation (11) represented as 
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for various parameters of plasma gradients and its 
inversion. The wave can exist at ωN when Ref(ωN)>0 
and Imf(ωN)=0 since 

pb p/NL    is a positive and real 

value. On the plots, the positive Ref(ω) values are 
marked with red color; negative ones, for which there 
are no solutions, with blue color. Isolines in the region 

of positive values correspond to  
pb pRe ./Nf L     

The thick line indicates Imf(ω)=0. Thus, to solutions 
of dispersion relation (28) correspond intersection 
points of isolines Ref(ω) in the region of positive 
values with the line Imf(ω)=0. 

Figure 1, a shows that the line Imf(ω)=0 intersects 

the isolines
pb p/NL   , where  edIm / 0.     We can 

conclude that in the absence of gradients and inverted 
electron energy distribution, the instability cannot exist. 
The same conclusion can be drawn if we substitute the 
corresponding values 

p p0 0/ 0,    p p/ 0,n n   

e e0 0/ 0,    e e/ 0,n n   S=0 and analyze Expressions 

(19.1), (26.1) and (20.1), (27.1). As may be inferred 
from (19.1), (26.1), the wave can exist; however, from 
(20.1), (27.1) it follows that the instability is not 
realized because inequalities (20.1) and (27.1) fail. If we 
add the inverted distribution (Figure 1, b), we get a 
situation, where the line Imf(w)=0 intersects the isolines 

pb p/NL    in the region with  edIm / 0    and 

Ref(ωN)>0, i.e. all conditions, under which the plasma 
instability occurs, hold. If we substitute the respective 
values 

p p0 0/ 0,    p p/ 0,n n   
e e0 0/ 0,    

e e/ 0,n n   S=1 in (19.1) and (20.1), the inequalities 

hold, and hence the wave can be increased. 
The instability can also exist for the Maxwell 

distribution of electron energies (Figure 2, a), but in the 
presence of particle temperature and density gradients, 
the inverted distribution (Figure 2, b) strengthens the 
instability. Note that for the numerical calculations we 
use the formula without approximation with respect to 

ed/ .   The Figures show that the instability has a 

maximum increment when the eigenfrequency of the 
drift-compressional mode is close to the electron drift 
frequency. 

Also note that since plasma in Earth’s 
magnetosphere is usually cold, i.e. >1, the above 
results only illustrate that the instability can exist 
because we consider hot plasma with <1. At small  
values, even for the fundamental harmonic 

pb 4.4NL   if N=1, 
pb p/ 1;NL     therefore, 

e0 d/ 1,    is the closest parameter to real 

magnetospheric plasma parameters (asymptotic 
expressions (22) and (23)). As an example, we find the 
fundamental frequency of the drift-compressional mode 
for L=6.6RE, assuming, for simplicity, that temperature 
and density gradients are small. Suppose that the 
electron energy at the maximum of the inverted 
distribution 

maxe 10   keV, the azimuthal wave number 

k2=70 and the parameters e /p=0.1, p=0.5. 
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