Формирование крупномасштабной ячеисто-сетчатой структуры Вселенной в условиях давления межгалактической среды

The formation of a large-scale cellular-mesh structure of the Universe under the intergalactic medium pressure

Поройков С.Ю.

канд. физ-мат. наук Московского государственного университета им. М.В. Ломоносова e-mail: sporoykov@mail.ru

Poroykov S.Yu.

Candidate of Physical and Mathematical Sciences, Lomonosov Moscow State University e-mail: sporoykov@mail.ru

Аннотация

Показано, что гравитацию материи в объеме ячеек, формирующих ячеисто-сетчатую структуру Вселенной, уравновесит давление на короны галактик межгалактического газа плотностью 0.5 критической с температурой $3\cdot10^8$ K, соответствующей энергии космического фонового рентгеновского излучения 30 кэВ в области максимума энергетического спектра. Плотность энергии такой среды ~ 0.1 эВ/см³ на порядок меньше, чем у галактических космических лучей ~ 1 эВ/см³. Давление межгалактической среды уравновесит гравитацию материи ячеек при наблюдаемом однородном крупномасштабном распределении материи в плоском евклидовом пространстве, к которому в малом масштабе сводима квазисферическая риманова (псевдориманова) Вселенная без границ. Адаптацию уравнений общей теории относительности к описанию квазисферического риманова пространства обеспечивает космологический Λ член.

Ключевые слова: межгалактическая среда, войды, темная энергия, короны галактик, филаменты, риманово пространство, космологический Λ член.

Abstract

It is shown that the gravity of matter in the volume of cells forming the cellular-mesh structure of the Universe will be balanced by the pressure on the galactic crowns of intergalactic gas with a density of 0.5 critical with a temperature of $3\cdot10^8$ K, corresponding to the energy of the cosmic background x-ray radiation of 30 keV in the region of the maximum energy spectrum. The energy density of such a medium $\sim 0.1 \text{ eV/cm}^3$ is an order of magnitude lower than that of galactic cosmic rays $\sim 1 \text{ eV/cm}^3$. The pressure of the intergalactic medium will balance the gravity of the matter of the cells with the observed homogeneous large-scale distribution of matter in flat Euclidean space, to which a quasi-spherical Riemannian (pseudo-Riemannian) Universe without boundaries is reducible on a small scale. The adaptation of the equations of General relativity theory to the description of a quasi-spherical Riemannian space is provided by the cosmological Λ term.

Keywords: intergalactic medium, voids, dark energy, galactic crowns, filaments, Riemannian space, cosmological Λ term

1. Наблюдаемое отталкивание галактик под давлением межгалактической среды

Направление дрейфа местной группы галактик отклоняется от направления гравитационного притяжения ближайшего сверхскопления Шепли. Эта особенность объяснима сравни-

мым по силе отталкиванием со стороны «аттрактора», расположенного в соседнем войде [1]. Отталкиванию местной группы может способствовать давление межгалактической среды со стороны $soù \partial a$, ассоциируемое с так называемой темной энергией.

Давление межгалактической среды, в том числе обусловлено давлением горячего межгалактического газа, на присутствие которого указывают данные рентгеновской обсерватории Чандра. Так, в филаментах, связанных со скоплением галактик Abell 2744, температура плазмы достигает 10^7 К при доле барионного газа 5-10% массы нитей [2]. При этом звезды и их остатки могут составлять лишь ~17% массы барионной плазмы [3].

Межгалактический газ может оказывать давление на вещество в *коронах галактик* (КГ) [4]. На это указывает структура излучающих облаков радиогалактик, связываемая с динамическим сжатием их наружных областей при взаимодействии с межгалактической средой [8, с. 214]. При этом смещение газа КГ под давлением межгалактической среды вследствие гравитационного взаимодействия вызовет смещение галактик [4]. Так, масса коронального газа в несколько раз превышает массу галактик. В галактики входит 20 - 30% барионной компоненты; остальные 80 - 70% составляет межгалактический газ [7, с. 81].

Наблюдается отчетливая антикорреляция распределения *квазаров* и скоплений галактик [8, с. 545]. Квазары — наиболее мощные источники излучения среди объектов с активными ядрами. Светимость квазаров может достигать критической светимости (эддингтоновской), при которой давление излучения на окружающую плазму становится сравнимо с силой гравитационного притяжения. Значительная часть энергии излучается квазарами в рентгеновском диапазоне [6, с. 251]. Мягкое рентгеновское излучение не только ионизует межзвездный газ [6, с. 295], но и разогревает его [7, с. 86]. Считается, что межгалактический газ был ионизован в эпоху молодых галактик и квазаров [7, с. 81]. Данные факты требуют оценки вклада давления горячего межгалактического газа на короны галактик.

2. Роль давления межгалактической среды в формировании крупномасштабной ячеисто-сетчатой структуры Вселенной

В крупном масштабе >100 Мпк Вселенная однородна. В меньших масштабах \leq 100 Мпк Вселенная обладает выраженной ячеисто-сетчатой структурой. При этом группы и скопления галактик образуют вытянутые нити – филаменты толщиной ~10 Мпк, которые формируют трехмерную сетку. Между филаментами находятся дыры (войды) масштаба ~50 Мпк – области, в которых практически отсутствуют галактики [5, с. 347]. Для сравнения, современная концентрация галактик во Вселенной Ω г ~ 0,1 Мпк-3 [6, с. 530]; среднее расстояние между ними $Do = 1/\Omega$ г $^{1/3} \approx 2$ Мпк.

При размере формирующих ячеисто-сетчатую структуру Вселенной ячеек \sim 50 Мпк роль космологического Λ члена не существенна. Современная величина $|\Lambda| < 10^{-55}$ см⁻² [9, с. 774] сравнима с кривизной риманова пространства для радиуса современной Вселенной К $\sim 10^{-57}$ см⁻² (§ 9).

По определению, в малых областях риманова пространства приближенно имеет место евклидова геометрия [10, с. 528]. Сферическому (эллиптическому) риманову пространству, как показал Эйнштейн, присуще однородное распределение материи [11, с. 199]. При радиусе горизонта Вселенной $\sim 10^4$ Мпк [5, с. 347] в масштабе ячеек крупномасштабной ячеистосетчатой структуры ~ 50 Мпк квазисферическое риманово пространство однородной плотности практически не отличается от наблюдаемого плоского евклидова пространства.

В однородной среде развиваются гравитационные неустойчивости с формированием областей ее неоднородного распределения, приводящие к гравитационному коллапсу, если силы давления среды меньше сил гравитации [5, с. 529]. Сила давления межгалактической среды при ее плотности энергии єо на короны N типичных галактик радиусом г при коэффициенте рассеяния θ : Fд = θ єоN π r 2 , способная уравновесить силу гравитационного притяжения среды

в ячейке радиусом R и массой M: $F_\Gamma = GM^2/R^2$. Одна ячейка содержит N = $M\Omega c/m$ типичных галактик массой m, включая массу их корон, с учетом их доли в критической массе Вселенной Ωc . Из равенства $F_{\mathcal{I}} = F_{\Gamma}$ следует:

$$\varepsilon o = GMm/\pi\theta\Omega c(Rr)^2 \tag{1}$$

где G – гравитационная постоянная.

Масса ячейки $M = 4\pi \rho c R^3/3$ при ее радиусе R и средней плотности вещества во Вселенной ρc , так что соотношение (1) представимо в виде:

$$\varepsilon o = 4Gm\rho cR/3\theta\Omega cr^2 \tag{2}$$

Радиус КГ r \sim 0,1 Мпк [7, с. 81]; радиус ячеек R \sim 25 Мпк [5, с. 347]; скрытая масса КГ m \sim 10mг [8, с. 545], масса типичной галактики mг \sim 10¹⁰ М \circ ; масса КГ m \sim 10¹¹ М \circ ; доля массы галактик и их корон от критической Ω к \sim 0,3 [5, с. 347]; критическая плотность ρ с = 4,7·10⁻³⁰ г/см³ [5, с. 347]. При данных параметрах и $\theta \sim$ 1 критическая плотность энергии межгалактической среды, способная оказывать давление на КГ ε 0 \approx 0,13 эВ/см³.

Сравнимая плотность энергии у *галактических* КЛ єкл ~ 1 эВ/см³ [6, с. 471] и *микроволнового фонового излучения* (МФИ) єv ~ 0,25 эВ/см³ [7, с. 135]. Рассеяние фотонов МФИ на свободных электронах ионизованного коронального газа не окажет существенного давления на КГ из-за малого коэффициента рассеяния $\theta \le 2\%$ (§ 4); его вклад θ єv/єо $\le 4\%$.

Отталкивание галактик войдом может быть обусловлено давлением горячего межгалактического газа на короны галактик. Расчеты показывают, что межгалактическую среду может наполнять газ плотностью 0.5 критической плотности Вселенной с температурой $3\cdot10^8$ К (§ 3), что подтверждает космическое фоновое рентгеновское излучение с энергией ~ 30 кэВ в области максимума энергетического спектра (рис. 1).

Согласно (1) критическая плотность энергии межгалактической среды обратно пропорциональна квадрату радиуса ячеек: $\varepsilon_0 \sim 1/R^2$, как и радиусу Вселенной. Давление среды р \sim nT при наличии источников ее разогрева, поддерживающих ее температуру, обратно пропорциональна кубу радиуса р \sim n $\sim 1/R^3$. В случае дальнейшего расширения Вселенной при соотношении р/ $\varepsilon_0 \sim 1/R$ давление среды не сможет сдерживать гравитацию ячеек, т.е. при отсутствии прочих факторов расширения Вселенной, данное расширение прекратится. Из-за остывания межгалактического газа вследствие рентгеновского излучения и расширения Вселенной наблюдаемое расширение Вселенной может прекратиться и смениться сжатием.

3. Характеристики межгалактического газа

Предполагается, что межгалактический газ был сформирован в эпоху молодых галактик и квазаров и был ионизован их излучением; в силу своей низкой плотности газ не успел рекомбинировать [7, с. 81]. С учетом массы межгалактического газа в КГ доля барионов оценивается в 10-15% массы Вселенной; при этом в галактики входит 20-30% барионной компоненты; 80-70% составляет межгалактический газ [7, с. 81]. По уточненным данным звезды и их остатки могут составлять $\sim 17\%$ массы барионной плазмы [3]. Помимо КГ, по данным рентгеновской обсерватории Чандра, горячий межгалактический газ содержат филаменты. В филаментах, связанных со скоплением галактик Abell 2744, доля барионного газа достигает 5-10% массы нитей [2]. Тем самым, доля наблюдаемых барионов $\delta \delta \sim 0.18$ критической массы Вселенной.

Давление ионизованного газа, содержащего ионы и электроны p=2nkT, эквивалентно плотности его энергии во. С учетом E=kT может быть оценена энергия частиц, при которой давление межгалактического газа уравновесит гравитацию галактик, их корон и межгалактической среды в масштабах ячеек, формирующих ячеисто-сетчатую структуру (при отсутствии иных факторов расширения Вселенной):

$$E = \varepsilon o/2n \tag{3}.$$

Исходя из критической плотности Вселенной рс с учетом вклада скрытой массы бсм и наблюдаемой барионной компоненты бб в филаментах концентрация межгалактического газа:

$$n = \rho c (1 - \delta c_M - \delta \delta) / mp$$
 (4),

где mp – масса протона.

При $\rho c = 4,7 \cdot 10^{-30} \text{ г/см}^3$; $\delta c M \sim 0,3$ [5, c. 347]; $\delta \delta \sim 0,18$ возможная концентрация межгалактического газа $n \approx 1,5 \cdot 10^{-6}$ см⁻³.

При єо $\sim 0.1~{\rm 3B/cm^3}$ (§ 2) согласно формуле (3) вероятная энергия частиц межгалактического газа $\rm E\approx 30~\kappa 3B$.

В спектре электромагнитного космического фонового излучения в *рентгеновском* диапазоне при сравнимой энергии квантов Ev ~ 30 кэВ наблюдается максимум (рис. 1).

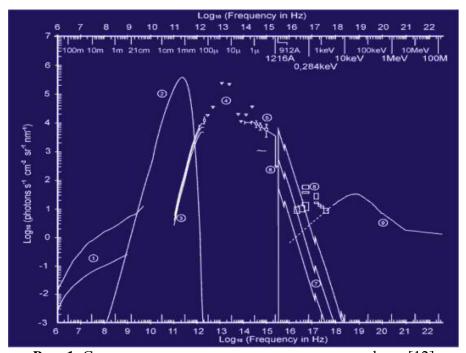


Рис. 1. Спектр электромагнитного космического фона [12]

Расчетная энергия частиц межгалактического газа $E \sim 30$ кэB соответствует его температуре $T = E/k \approx 3 \cdot 10^8$ К. От горячих областей газа в *остатках вспышек сверхновых* (OBC) с температурой $\leq 10^8$ К исходит рентгеновское излучение тепловой природы при сравнимой энергии квантов [7, с. 478]. Газ сравнимой температуры $\sim 10^8$ К с концентрацией $\sim 10^{-4}$ см⁻³ присутствует в *скоплениях*, чем объясняется их рентгеновская светимость [8, с. 342]. Т.е. плотность энергии субкосмических лучей в скоплениях достигает $\epsilon c = 2nkT \approx 2$ э B/cm^3 , как у галактических КЛ ϵ кл ~ 1 э B/cm^3 [6, с. 471].

Скорость субкосмических лучей (протонов) с энергией $E \sim 30$ кэB составляет $vp = (2E/mp)^{1/2} \approx 2.5$ тыс. км/с. Сравнимой скорости в несколько тыс. км/с газ достигает во фронте *ударной волны OBC* в начальной фазе адиабатического расширения [7, с. 477]. Также скорость *звездного ветра* голубых сверхгигантов достигает несколько тыс. км/с [6, с. 66]. Подобный звездный ветер создает около звезд «пузыри» горячего газа — источники рентгеновского излучения [9, с. 699].

Подобно рентгеновскому излучению горячего газа в скоплениях, OBC и звездном ветре голубых сверхгигантов, фоновое рентгеновское излучение с энергией ~ 30 кэВ в области максимума энергетического спектра может быть обусловлено излучением газа с температурой $\sim 3\cdot 10^8$ К. С учетом формулы (3) концентрация межгалактического газа $n = \epsilon o/2Ev \approx 1.5\cdot 10^{-6}$

см⁻³ при его доле в критической массе Вселенной $\delta \Gamma = \text{nmp/pc} \approx 0,5$. При доле наблюдаемой барионной составляющей филаментов, включая галактики, их короны и скопления $\delta \delta \sim 0,18$ в межгалактической среде доля барионной (плазменной) компоненты Вселенной $\delta \Gamma + \delta \delta \approx 0,68$. Так, предполагается, что основная доля барионов приходится на ионизованный газ [2].

Оставшаяся доля скрытой массы δ см = 1 - δ б - δ г $\approx 0,32$ содержится в филаментах. Сравнимая, но чуть меньшая оценка скрытой массы следует из вириальной массы КГ и скоплений δ см $\leq 0,3$ [5, с. 347]. Данные обсерватории Планк, опубликованные в выпуске Planck Legacy 2018, указывают на повышенную амплитуду *гравитационного линзирования* МФИ в малых угловых масштабах. Данный факт подтверждает присутствие в филаментах областей повышенной концентрации скрытой массы (§ 5).

Приведенные выше расчеты и наблюдения позволяют предполагать, что межгалактический газ нагрет до температуры $\sim 3\cdot 10^8$ К. Температура газа в коронах галактик $\sim 10^7$ К [7, с. 81]; в гало галактик $\sim 10^5$ К [7, с. 85]. Столь высокий градиент температур (до $3\cdot 10^3$) требует исследования механизмов разогрева межгалактического газа (§ 6).

В изотропное рентгеновское космическое излучение с энергией в несколько десятков кэВ может вносить вклад излучение, генерируемое при *обратном комптоновском рассеянии* изотропного МФИ на релятивистских электронах. Вместе с тем, наблюдаемый максимум энергии галактических КЛ не соответствует энергии электронов, при которой может генерироваться максимум рентгеновского излучения. Энергия рассеянных фотонов $E\gamma' = 4E\gamma K/3mec^2$ [6, c. 431], из чего следует энергия КЛ:

$$K = 3 \operatorname{mec} E \gamma' / 4 E \gamma \tag{5},$$

где me – масса электрона; K – его энергия, $E\gamma$ – исходная энергия фотона, с – скорость света.

Температуре МФИ Т γ = 2,7 К [7, с. 134] соответствует энергия фотонов Е γ = kT γ \approx 4·10⁻⁴ К. При энергии рассеянных фотонов Е γ ' \sim 30 кэВ энергия КЛ К \approx 10⁴ ГэВ, что на 4 порядка выше, чем в наблюдаемом максимуме дифференциального энергетического спектра галактических КЛ 0,3 – 0,5 ГэВ [6, с. 472], включая электронную компоненту [13, с. 1176].

На основе формулы (5) оценим энергию фотонов, рассеиваемых КЛ в области максимума энергетического спектра, при которой энергия рассеиваемых фотонов будет соответствовать максимуму фонового космического рентгеновского излучения:

$$E\gamma = 3 \text{mec} E\gamma'/4 \text{ K}$$
 (6).

При $\mathrm{E}\gamma'\sim30$ кэB; усредненном $\mathrm{K}\sim0.4$ ГэB энергия рассеиваемых фотонов $\mathrm{E}\gamma\approx30$ эB, что соответствует длине волны УФ излучения λ уф = ch/ $\mathrm{E}\gamma\approx40$ нм. УФ излучение звезд в интервале 91.2-20 нм практически полностью поглощается межзвездным водородом [9, с. 783], что также видно из рис. 1. Вклад данного процесса в формирование фонового рентгеновского излучения в области максимума энергетического спектра не существенен.

В космическое фоновое рентгеновское излучение также могут вносить вклад квазары. Часть излучения квазаров преобразуется в изотропное за счет рассеяния на свободных электронах межгалактического газа. Значительная часть энергии квазаров излучается в рентгеновском и γ-диапазоне при типичном спектральном индексе α ~ 0,7 внося вклад в фоновое рентгеновское свечение неба [6, с. 251]. Комптоновское рассеяние фотонов на свободных электронах наблюдается при энергии фотонов ≥0,1 МэВ [6, с. 431]. С ростом энергии квантов от 0,1 до 10 МэВ сечение комптоновского рассеяния на свободных электронах возрастает на порядок [5, с. 410].

При данных условиях *квазары* могут вносить заметный вклад в космическое фоновое γ -излучение в области ≥ 1 МэВ. Так, в спектре электромагнитного космического фона наблюдается падение интенсивности жесткого рентгеновского излучения при энергии квантов ≥ 30 кэВ, которое стабилизируется в области энергии γ -квантов ~ 3 МэВ (рис. 1).

4. Рассеяние микроволнового фонового излучения корональным газом

От скоплений регистрируется рентгеновский фон, в котором выделяется излучение корон наиболее массивных галактик [8, с. 545]. При этом в ряде скоплений галактик наблюдается эффект Зельдовича — Сюняева, связанный с обратным комптоновским рассеянием фотонов МФИ на горячих электронах коронального газа [8, с. 545]. Радиус КГ \sim 0,1 Мпк [7, с. 81] на порядок меньше масштаба скоплений \leq 3 Мпк [8, с. 545]. При сравнимой плотности газа в скоплениях пк \sim 10-3 см-3 [8, с. 545] и коронах галактик пк \sim 10-3 \sim 10-2 см-3 [7, с. 81] рассеяние МФИ на КГ окажется на порядок меньше, чем в скоплениях. Так, оптическая толщина ионизованного газа по *томсоновскому рассеянию света на свободных электронах* (ТРСЭ):

$$1_{\rm T} = 1/{\rm n}\sigma_{\rm T} \tag{7},$$

где от – томсоновское сечение электрона.

У полностью ионизованного коронального газа концентрацией пк $\sim 10^{-3}-10^{-2}$ см⁻³ [7, с. 81] при $\sigma \tau = 6.7 \cdot 10^{-25}$ см² оптическая толщина по ТРСЭ $l\tau \approx 50-500$ Мпк, что в $l\tau/2R\kappa \approx (2.5-25) \cdot 10^2$ раз превышает диаметр сферических КГ при коэффициенте рассеяния МФИ $\theta \sim R\kappa\sqrt{2/l\tau} \approx 0.03-0.3$ %.

Корональный газ до температуры $\sim 10^7$ К могут разогревать мягкие рентгеновские и субкосмические лучи [7, с. 86]. Учитывая градиент температур на границе КГ — межгалактическая среда (§ 5) внешняя область КГ может подогреваться до температуры $\sim 10^8$ К. Комптоновское рассеяние фотонов на свободных электронах эффективно при энергии частиц $\geq 0,1$ МэВ [6, с. 431] соответствующих температуре $\geq 10^9$ К.

Формула Клейна — Нишины для комптоновского сечения применима при энергии электронов, сравнимой с их энергией покоя. При меньшей энергии частиц сечение рассеяния принимает промежуточное значение, определяемое томсоновской $\lambda T = 2.8 \cdot 10^{-13}$ см и комптоновской длиной волны электрона $\lambda c = 2.4 \cdot 10^{-10}$ см. Согласно экспериментальным данным, эффективность рассеяния фотонов с энергией ~30 кэВ средой $\delta v \sim 1\%$ по отношению к энергии 0,5 МэВ, равной энергии покоя электрона [13 с. 1171]. Сечение рассеяния фотонов на электронах соответствующей энергии:

$$σe = δνστ(λc/λτ)^2 ≈ 5·10-21 cm2$$
(8).

Плотность галактических КЛ может быть на порядок выше, чем метагалактических (§ 2). Пропорциональным образом в КГ плотность субкосмических лучей может быть на порядок выше, чем в межгалактической среде. Концентрация метагалактических субкосмических лучей с энергией ~30 кэВ может достигать ~ 10^{-6} см⁻³ (§ 3), т.е. в КГ она может достигать п $\leq 10^{-5}$ см⁻³. С учетом соотношения (7) le = $1/n\sigma$ e ≈ 7 Мпк коэффициент рассеяния МФИ сферической КГ $\theta \sim R\kappa\sqrt{2/l}e \leq 2$ %, что на порядок выше оценки для ТРСЭ $\theta \sim 0.02 - 0.2\%$.

Вероятно, наблюдаемый в ряде скоплений эффект Зельдовича — Сюняева обусловлен обратным комптоновским рассеянием МФИ на горячих электронах (субкосмических лучах) с температурой $\sim 10^8$ К.

5. Источники магнитного поля в коронах галактик

Давлению метагалактических субкосмических лучей на $K\Gamma$ может способствовать их рассеяние магнитным полем $K\Gamma$. Оценки показывают, что давление межгалактического газа на один — два порядка меньше давления газа в $K\Gamma$, но на порядок выше, чем в гало. При этом давление газа в $K\Gamma$ на два — три порядка выше, чем в гало. Соотношение давлений газовых сред определяется концентрацией и температурой газа:

$$p'/p = n'T'/nT (9)$$

В гало галактик концентрация газа nг $\sim 3\cdot 10^{-4}$ см⁻³; температура Tг $\sim 10^5$ K [7, c. 85]; в коронах nк $\sim 10^{-3}-10^{-2}$ см⁻³; Tк $\sim (5-10)\cdot 10^6$ K [7, c. 81]. При параметрах межгалактического газа nм $\sim 1,5\cdot 10^{-6}$ см⁻³; Тм $\sim 3\cdot 10^8$ K (§ 3) соотношение давлений межгалактического газа и газа КГ: рм/рк $\approx (1-5)\cdot 10^{-2}$.

Соотношение давлений газа в гало галактик и их коронах: $pr/p\kappa \approx (0,6-3)\cdot 10^{-3}$; давлений межгалактического газа и газа гало: $pm/pr \approx 15$.

Несмотря на значительный перепад давлений, корональный газ не перетекает в гало, как и межгалактическую среду. Горячий корональный газ сильно ионизован [7, с. 81], т.е. его может удерживать магнитное поле, что может указывать на наличие в КГ местных источников магнитных полей.

Ионизованный корональный газ в КГ удержит магнитное поле \sim 1 мкГс. Так, давление ионизованной плазмы, содержащей ионы и электроны p=2nkT, уравновесит магнитное поле плотностью $\omega M=B^2/2\mu O$. Из равенства $\omega M=p$ следует соотношение Беннетта [7, c. 587]:

$$B = (4\mu onkT)^{1/2}$$
 (10).

Ионизованный газ в КГ удержит магнитное поле $B \approx 0.6 - 2$ мкГс.

В протяженных радио-структурах (облаках) радиогалактик масштаба их корон магнитное поле достигает 1-100 мк Γ c [8, c. 213].

Источниками магнитных полей в КГ могут являться *нейтронные звезды* (*НЗ*), выброшенные из галактик взрывами сверхновых. При этом НЗ, выброшенные в КГ и межгалактическую среду, также могут формировать скрытую массу филаментов, содержащих галактики и их скопления. Так, например, пульсар PSR J0002+6216 в созвездии Кассиопея удаляется от остатка вспышки сверхновой со скоростью 1100 км/с [14]. Такой скорости достаточно для вылета НЗ в межгалактическое пространство [15]. Пульсары могут ускоряться под давлением ионизованного газа во фронтах ударных волн от соседних сверхновых [16]. Вмораживаясь при аккреции в силовые линии магнитного поля НЗ, плазма передает ей свой импульс [8, с. 361]. Давление ОВС в начальной фазе адиабатической стадии расширения может ускорять пульсар до скорости v ≤ 1600 км/с [16].

Анализ спектра электромагнитного космического фонового излучения и энергетического спектра нейтрино указывает на вероятное активное рождение пульсаров сверхгигантами в эпоху, определяемую красным смещением z ~ 20 [15]. В условиях наблюдаемого расширения Вселенной скорость дрейфа НЗ, ускоренных в эпоху молодых галактик, будет снижаться относительно окружающей среды, так что к настоящему времени основная часть НЗ окажется захвачена гравитацией КГ на эллиптические орбиты, в том чмсле орбиты, в фокусах которых находятся соседние галактики [16]. Массивы дрейфующих НЗ из-за гравитационной самофокусировки могут формировать сгустки. При этом взаимное разбегание галактик будет способствовать их вытягиванию в протяженные образования — филаменты [15]. По оценкам, массовая доля НЗ в КГ может достигать ~0,2 критической массы Вселенной при массовой доле НЗ, дрейфующих в межгалактической среде ~0,12 (§ 6).

Исходя из скрытой массы КГ, концентрация НЗ в них $n_{\rm H3} \leq 3\cdot 10^{-4}~\rm nk^{-3}$ при среднем расстоянии между ними $R \sim R\kappa/3\sqrt{n_{\rm H3}} \geq 14~\rm nk~[16]$. При хаотичной пространственной ориентации нейтронных звезд их магнитное поле на удалении от КГ r>> R взаимно компенсируется. Исходя из среднего расстояния между НЗ в КГ, магнитное поле на их поверхности:

$$Bo = BR/ro (11),$$

где го – радиус НЗ.

При го ~ 10 км [7, с. 281] магнитное поле на поверхности НЗ в КГ Во $\approx (3-8)\cdot 10^7$ Гс, что сравнимо с магнитным полем белых карликов 10^6-10^8 Гс, но ниже чему у пульсаров 10^9-10^{12} Гс [6, с. 683]. Тем самым, *источниками магнитных полей, удерживающих газ в КГ, могут являться старые, не активные НЗ*, чье вращение затормозилось.

6. Механизмы разогрева межгалактического газа

Исходя из плотности энергии межгалактического газа, способного уравновесить гравитацию ячеек, формирующих сетчато-ячеистую структуру Вселенной, критическое энерговыделение в расчете на одну галактику:

$$Lc = \varepsilon o/\Omega rt \tag{12},$$

где Ω г – концентрация галактик; t – длительность их энерговыделения.

В условиях расширения Вселенной энергия метагалактических субкосмических лучей падает пропорционально красному смещению E = Eo/(z+1). При этом основной вклад в плотность энергии межгалактической среды могут внести субкосмические лучи, сформированные в эпоху $z \le 1$. При возрасте галактик, сравнимом с возрастом Вселенной $T_B \sim 1,4\cdot 10^{10}$ лет длительность их энерговыделения $t \sim T_B/(z+1) \approx 7\cdot 10^9$ лет. При $\varepsilon_0 \sim 0,13$ эВ/см³ (§ 2): $\Omega_0 \sim 0,1$ Мпк⁻³ [8, с. 530] интенсивность энерговыделения в расчете на одну галактику $L_0 \approx 3\cdot 10^{44}$ эрг/с.

Данное энерговыделение соответствует диапазону светимости объектов с *активными ядрами* (АЯ) $10^{42} - 10^{48}$ эрг/с [7, с. 393] при их средней светимости Laя $\sim 10^{45}$ эрг/с. В настоящее время доля галактик с АЯ бая $\sim 1\%$ [7, с. 393]; их энерговыделение баяLaя $\approx 10^{43}$ эрг/с.

Сравнимой светимостью Lv $\sim 4\cdot10^{43}$ эрг/с обладают *типичные галактики* [5, с. 390], содержащие N $\sim 10^{10}$ звезд со светимостью Солнца L $\circ \sim 4\cdot10^{33}$ эрг/с, что составляет Lv/Lc ≈ 0.1 критического энерговыделения. Еще меньше современное энерговыделение *сверхновых* в галактике Lcs $\leq 3\cdot10^{42}$ эрг/с [6, с. 474], что не превышает Lcs/Lc $\leq 10^{-2}$ требуемого.

С удалением в прошлое концентрация и светимость галактик с АЯ возрастают [6, с. 251], так что феномен галактик с АЯ, в том числе рассматривается как фаза эволюции галактик [8, с. 484]. Светимость галактик с АЯ на два порядка выше, чем у типичных галактик [7, с. 922], что обеспечит требуемое энерговыделение Lc за счет молодых галактик с АЯ при их доле бая = $Lc/Las \approx 0,3$. Так, предполагается, что межгалактический газ был ионизован в эпоху молодых галактик и квазаров [7, с. 81], т.е. межгалактический газ мог быть разогрет в эпоху молодых галактик.

Современный разогрев межгалактического газа может происходить за счет *ударных волн*, возникающих при столкновении с ним магнитосфер дрейфующих НЗ, выброшенных взрывами сверхновыми из галактик в межгалактическую среду. Так, пульсары, дрейфуя через межзвездный газ, производит шлейф радиоизлучения [14]. Радиоизлучение пульсаров имеет синхротронную природу, обусловленную их сильным магнитным полем.

Ускорение потоков плазмы также может происходить за счет магнитосферной конвекции (дрейф плазмы поперек магнитного поля) в хвостах магнитосфер дрейфующих НЗ. Так, в хвосте магнитосферы Земли, возникающем при ее столкновении с солнечным ветром, возникает крупномасштабное электрическое поле, направленное поперек хвоста с перепадом потенциала 10 - 30 кB [7, с. 13].

Остаточное магнитное поле дрейфующих НЗ может поддерживаться за счет аккреции межгалактического газа. Выпадающая на поверхность пульсара при аккреции плазма ускоряет его вращение [7, с. 361]. При этом энергия вращения НЗ трансформируется в энергию магнитного поля.

Исходя из критической интенсивности энерговыделения в расчете на одну галактику Lc поток газа $\Delta M/\Delta t$, аккрецирующего на дрейфующие H3:

$$\Delta M/\Delta t \sim Lc/\delta c^2$$
 (13),

где δ – гравитационный дефект H3.

При $Lc\sim 3\cdot 10^{44}$ эрг/с (12); $\delta\sim 0.3$ [5, c. 407] поток аккрецирующего на H3 газа $\Delta M/\Delta t\approx 1.5\cdot 10^{-2}$ М \circ в год в расчете на одну галактику.

Скрытая масса скоплений галактик в 10 раз превышает видимую массу галактик [5, с. 545]. Анализ кривых вращения галактик показывает, что скрытая масса сосредоточена в их коронах [5, с. 342]. Исходя из массовой доли галактик в массе Вселенной $\delta \Gamma \sim 0,03$ [8, с. 550] массовая доля скрытой массы КГ $\delta c \kappa \sim 10 \delta \Gamma \approx 0,3$. При массовой доле коронального газа $\delta \kappa \Gamma \sim 3 \delta \Gamma$ [16] массовая доля НЗ в КГ $\delta h \kappa = \delta c \kappa - \delta \kappa \Gamma \approx 0,2$. При суммарной массовой доле НЗ $\delta h \approx 0,32$ (§ 3) массовая доля НЗ, дрейфующих в межгалактической среде $\delta h \chi = \delta h \approx 0,12$ критической массы Вселенной.

При числе НЗ в коронах типичных галактик N $\sim 6\cdot10^{10}$ [16] число НЗ, дрейфующих в межгалактической среде в расчете на одну галактику N' = N δ нд/ δ нк $\approx 3\cdot10^{10}$. Средний поток вещества, выпадающего на дрейфующую НЗ Δ M/N' Δ t $\approx 5\cdot10^{-13}$ М \circ в год. Средняя интенсивность энерговыделения дрейфующих НЗ: W = Lc/N' $\sim 10^{34}$ эрг/с, что на порядок ниже минимальной светимости рентгеновских пульсаров в условиях аккреции $\sim 10^{35}$ эрг/с [8, с. 356] при потоке выпадающего на НЗ вещества 10^{-11} М \circ в год [8, с. 359].

Тем самым, дрейфующие в межгалактической среде Н3 не могут являться источниками рентгеновского излучения. При большом периоде вращения ≥5 с старые Н3 не проявляют себя как радиопульсары [8, с. 180]. Дрейфующие в межгалактической среде Н3 практически не обнаружимы.

7. Механизмы излучения межгалактического газа

Межгалактический газ с температурой $T \sim 3 \cdot 10^8 \ K$ (§ 3) может излучать в рентгеновском диапазоне при наличии в нем многозарядных ионов *тяжелых элементов* (ТЭ). Межгалактический газ может быть обогащен ТЭ, входящими в состав КЛ. Так, КЛ содержат существенно больше тяжелых ядер в сравнении со средней распространенностью элементов [6, с. 472].

Согласно концепции нуклеосинтеза образование ТЭ, в том числе, происходит при взрывах сверхновых [7, с. 364]. Насыщенный ТЭ ионизованный газ ОВС, вмороженный в силовые линии магнитного поля пульсаров, ускоренных их взрывами, также может выноситься из галактик в КГ и межгалактическое пространство. Возможность данного механизма подтверждает присутствие ТЭ к КГ. Так, газ в КГ включает ТЭ (вплоть до железа) с относительной концентрацией в 10 раз меньшей, чем на Солнце, что связывается с его частичным перемешиванием с внутригалактическим газом [7, с. 81].

Распространенность элементов быстро падает с увеличением массового числа, однако обнаруживает несколько двойных пиков устойчивых изотопов с магическим числом нейтронов 50, включая криптон и стронций; ксенон и барий [8, с. 263]. Длины волны λ основных линий при конечном уровне у данных элементов: *криптон* 0,99 – 0,87 Å; *стронций* 0,88 – 0,77 Å; *ксенон* 0,42 – 0,36 Å; *барий* 0,39 – 0,33 Å [13, с. 961]. Данные многозарядные ионы способны излучать при температуре плазмы:

$$T = ch/\lambda k \tag{14},$$

где k – постоянная Больцмана; h – постоянная планка.

Диапазон предельных температур излучения криптона $(1,4-1,6)\cdot 10^8$ K; стронция $(1,6-1,8)\cdot 10^8$ K; ксенона $(3,3-3,9)\cdot 10^8$ K; бария $(3,6-4,2)\cdot 10^8$ K.

В спектр излучения высокотемпературной плазмы с температурой $T \sim 3\cdot 10^8$ К значительный вклад вносит непрерывное излучение свободных электронов в электрическом поле ионов (свободно-свободное излучение). Так, вклад свободно-свободного излучения в суммарное излучение плазмы в коротковолновом диапазоне возрастает и становится сравним с вкладом линейчатого излучения многозарядных ионов уже при длинах волн ~ 1 нм [8, с. 595], что соответствует тепловому излучению газа с температурой $\sim 10^7$ К.

8. Особенности метрики риманова (псевдориманова) пространства

Стандартные решения уравнений *общей теории относительности* (ОТО), развитой в рамках риманова (псевдориманова) пространства, в рамках модели *Фридмана* предсказывают критическую плотность энергии современной Вселенной $\varepsilon = \rho cc^2 \approx 2,6\cdot 10^3 \text{ эВ/см}^3$ при критической плотности Вселенной $\rho c \sim 4,7\cdot 10^{-30} \text{ г/см}^3$ [5, с. 347]. Фридмановская Вселенная содержит материю в пределах космологического горизонта, за которым присутствие веще-

ства не предполагается, т.е. подобная Вселенная представляет собой глобальную *неоднород*ность материи, близкую к черной дыре.

Наблюдаемое пространственное распределение материи имеет локальные неоднородности (в масштабах войдов, скоплений и пр.) при ее *однородном* распределении в более крупном масштабе. Критическая плотность энергии для подобной среды \sim 0,13 эВ/см³ (2) на четыре порядка ниже. Крупномасштабное однородное распределение материи, присущее квазисферической римановой Вселенной, согласно Эйнштейну, обеспечит введение в уравнения ОТО космологического Λ -члена [11, с. 212]. В этих условиях наблюдаемое расширение Вселенной свидетельствует в пользу модели Эйнштейна с космологическим Λ -членом.

Необходимость введения Л-члена обусловлена тем, что в случае критической массы уравнения ОТО описывают лишь часть сферы Римана, а именно, риманово (псевдориманово) пространство, ограниченное горизонтом событий. Полное описание пространственновременного многообразия событий затруднено, поскольку наличие поля тяготения математически выражается в кривизне псевдориманова пространства [10, с. 531]. Данный факт иллюстрируют известные решения уравнений ОТО, согласно которым гравитация массивного тела искривляет пространство как *внутри* него (решение Шварцшильда), так и *снаружи*, что выражается в искривлении траектории луча света.

В этой связи описание искривленного пространства сферы Римана, которой присуще *однородное* распределение материи [11, с. 199] ограничивается частичным описанием на основе решений Эйнштейна — Фридмана — Шварцшильда для областей *неоднородного* распределения материи. В предельном случае уравнения ОТО описывают *черную дыру в вакууме*. Подобная система включает ограниченный горизонтом событий объект критической массы, помещенный в плоское евклидово пространство. В подобной системе однородность распределения материи в пределах горизонта Вселенной может поддерживаться за счет введения космологического Л-члена [11, с. 212], либо за счет давления среды, обладающей критической плотностью энергии по Фридману.

Так, из ОТО следует возможность существования объектов, имеющих гравитационный радиус. По определению, «гравитационный радиус – радиус сферы, на которой сила тяготения, создаваемая сферической не вращающейся массой, целиком лежащей внутри сферы, стремится к бесконечности» [5, с. 532]; гравитационный радиус:

$$Rg = 2Gm/c^2 \tag{15},$$

где с – скорость света; т – масса тела.

Область, ограниченная горизонтом (Вселенная, либо черная дыра) радиусом R = Rg, в ев-клидовом пространстве имеет объем:

$$VeB = 4\pi R^3/3$$
 (16).

Объем сферы Римана:

$$Vp = 2\pi^2 R^3$$
 (17).

Отношение объема сферы Римана и сферы в евклидовом пространстве аналогичного радиуса:

$$Vp/VeB = 3\pi/2 \approx 4.7$$
 (18).

Из соотношения (18) следует, что сфера Римана формально может вместить несколько сфер, ограниченных гравитационным радиусом, чья масса соответствует критической. Из чего следует тезис: наблюдаемое в пределах космологического горизонта пространство нашей Вселенной может являться частью римановой (псевдоримановой) Вселенной. При этом в случае стационарной Вселенной объем ненаблюдаемой области больше объема наблюдаемой части, ограниченной горизонтом в $3\pi/2$ - $1 \approx 3.7$ раза.

Теория относительности Эйнштейна развита в рамках псевдориманова 4-мерного пространства-времени положительной кривизны. Многообразие событий в системе криволинейных координат задается *знаконеопределенной* невырожденной квадратичной формой:

$$d\sigma^2 = gikdx^idx^k \tag{19}$$

(i, k = 0, 1, 2, 3), где x^1, x^2, x^3 – пространственные координаты; x^0 – временная координата.

Коэффициенты данной метрики, допускающей мнимые расстояния, характеризуют поле тяготения, играя роль потенциальных функций [10, с. 531]. Форма (19) в каждой точке пространства событий сводится к виду:

$$d\sigma^2 = dx^2 + dy^2 + dz^2 - d(ct)^2$$
 (20),

где x, y, z – пространственные координаты; t – время.

Стандартные решения уравнений ОТО используют три действительные пространственные координаты, что не позволяет описывать сферу Римана без границ в полном объеме.

Из уравнений Эйнштейна в том числе следует решение Шварцшильда для сферическисимметричного материального объекта. Решение Шварцшильда указывает на искривление пространства, достигающее максимальной величины в области гравитационного радиуса объекта Rg, эквивалентное повороту радиальной координаты на угол $\phi = \pm 90^{\circ}$ [17, c. 55].

Массивный объект искривляет пространство также за пределами его гравитационного радиуса. Согласно ОТО, максимальное отклонение луча света гравитацией тела также достигает 90°. Так, угол отклонения луча света $\varphi = 2\alpha$ при его прохождении на расстоянии R от объекта [17, c. 65], где

$$tg \alpha = \pm 2Gm/c^2R \tag{21}.$$

При R = Rg (15), tg $\alpha = \pm 1$ при $\alpha = \pm 45^{\circ}$; в зависимости от направления облета тела луч света отклонится на $\varphi = \pm 90^{\circ}$.

Суммарное максимальное отклонение гравитацией луча света, проходящего вблизи массивного объекта гравитационного радиуса и затем попадающего внутрь него, сопровождающееся соответствующей сменой систем отсчета, составит $2\phi = 180^{\circ}$, т.е. в центр объекта, ограниченного горизонтом событий, свет может попасть снаружи со стороны, противоположной его первоначальному направлению.

Если луч пройдет вблизи данного объекта с другой стороны, он также отклонится в противоположном направлении и достигнет его центра, отклонившись от первоначального направления на угол $2\phi = 180^{\circ}$. Суммарное искривление (поворот) пространства вдоль траектории лучей, дважды пересекающих горизонт событий $4\phi = 360^{\circ}$.

Круг на сфере Римана является прямой [10, с. 528], т.е. искривление пространства в сфере Римана также соответствует повороту евклидова пространства на 360°.

9. Физический смысл космологического Л члена

Согласно Эйнштейну Λ член обеспечивает однородное распределение вещества в римановом пространстве [11, с. 212], т.е. его введение обеспечит своего рода эквивалент сферы Римана при решении уравнений ОТО. Размерность и современная величина Λ члена $|\Lambda| < 10^{-55}$ см⁻² [9, с. 774] соответствуют кривизне пространства римановой Вселенной [10, с. 528]:

$$K = 1/RB2$$
 (22),

где Rв – радиус горизонта Вселенной.

При $R_B \sim 4.10^{28}$ см [5, с. 347] кривизна пространства $K \approx 6.10^{-58}$ см⁻².

Это дает основания полагать, что Λ член, обеспечивающий равномерное крупномасштабное распределение вещества во Вселенной, описывает *искривление* риманова пространства в области ее горизонта.

Соответствующая Λ члену кривизна пространства *отрицательна*. Иначе вклад Λ члена дополнит гравитационный вклад материи наблюдаемой Вселенной. Соответствующее искривление пространства может вызывать материя, находящаяся за горизонтом нашей Вселенной, чья масса и плотность сопоставимы с массой и плотностью наблюдаемой области.

Если ненаблюдаемая область Вселенной симметрична по отношению к наблюдаемой, то кривизну «внутренней» области пространства в области ее горизонта радиуса Rв компенсирует кривизна «внешней» части $\Lambda = -1/R$ в'² радиусом Rв', т.е. суммарная кривизна пространства может быть близка к нулю: $K + \Lambda \approx 0$. Пространство Вселенной однородной плотности в любой системе отсчета окажется близко к евклидову.

Так, данные космической обсерватории Планк, приведенные в выпуске Planck Legacy 2018, указывают на повышенную амплитуду гравитационного линзирования МФИ в малых угловых масштабах. Однако при больших масштабах кривизна пространства близка к нулю, что свидетельствует в пользу плоской Вселенной. В данном контексте раскрывается физический смысл Λ члена: искривление пространства гравитацией материи, находящейся за космологическим горизонтом Вселенной, что обеспечивает ее однородное распределение в пределах наблюдаемого горизонта.

Как показано Эйнштейном, «при равномерном распределении материи мир с необходимостью должен быть сферическим (эллиптическим)» [11, с. 199]. Если распределение материи не однородно, то топология мира отклонится от сферической. Именно такая топология, согласно Эйнштейну, соответствует реальному миру: «Так как в действительности в отдельных областях материя распределена неравномерно, то реальный мир в отдельных частях ... будет квазисферическим» [11, с. 199].

Переносчики темной энергии до настоящего времени не обнаружены. При этом наблюдаемая Вселенная, однородная в крупном масштабе, расширяется в условиях компенсации давлением межгалактической среды гравитации материи ячеек, формирующих ее ячеистосетчатую структуру (§ 2). Это дает основание полагать, что топология Вселенной близка к квазисферическому риманову (псевдориманову) пространству.

Литература

- 1. Y. Hoffman, D. Pomarede, R.B. Tully, H. Courtois. The Dipole Repeller // Nature Astronomy. 2017. V. 1. Art. 36.
- 2. D. Eckert, M. Jauzac, H.Y. Shan, J.-P. Kneib, T. Erben, H. Israel, E. Jullo, M. Klein, R. Massey, J. Richard, C. Tchernin. Warm-hot baryons comprise 5–10 per cent of filaments in the cosmic web // Nature. 2015. V. 528. P. 105-107.
- 3. M. Fukugita, C.J. Hogan, P.J.E. Peebles. The Cosmic Baryon Budget // The Astrophysical Journal. 1998. V. 503. № 2. P. 518-530.
- 4. *Поройков С.Ю*. Вклад давления межгалактической среды на короны галактик в их вза-имное отталкивание // Журнал естественнонаучных исследований. -2019. Т. 4. № 2. С. 8-19.
- 5. *Прохоров А.М.* Физическая энциклопедия. Т. 1. М.: Научное издательство «Большая Российская энциклопедия». 1988.
- 6. *Прохоров А.М.* Физическая энциклопедия. Т. 2. М.: Научное издательство «Большая Российская энциклопедия». 1998.
- 7. *Прохоров А.М.* Физическая энциклопедия. Т. 3. М.: Научное издательство «Большая Российская энциклопедия». 1992.
- 8. *Прохоров А.М.* Физическая энциклопедия. Т. 4. М.: Научное издательство «Большая Российская энциклопедия». 1994.
- 9. *Прохоров А.М.* Физический энциклопедический словарь. М.: Советская энциклопедия. 1983.
- 10. *Прохоров Ю.В.* Большой энциклопедический словарь. Математика. М.: Научное издательство «Большая Российская энциклопедия». 2000.
- 11. А. Эйнштейн Теория относительности. Ижевск: НИЦ «Регулярная и хаотическая динамика». 2000.
- 12. R.C. Henry. Diffuse background radiation // The Astrophysical Journal. 1999. № 516. P. L49-L52.
- 13. *Григорьев И.С., Мейлихов Е.З.* Физические величины. Справочник. М.: Энергоатомиздат. 1991.
- 14. F.K. Schinzel, M. Kerr, U. Rau, S. Bhatnagar, D.A. Frail. The Tail of PSR J0002+6216 and the Supernova Remnant CTB 1 // The Astrophysical Journal Letters. 2019. V. 876. № 1. Art. L17. pp. 10.

- 15. *Поройков С.Ю.* Природа скрытой массы // Основания фундаментальной физики и математики: материалы III Российской конференции (ОФФМ-2019) / под ред. Ю.С. Владимирова, В.А. Панчелюги М.: РУДН. 2019. С. 152-156.
- 16. Поройков С.Ю. Вклад дрейфующих нейтронных звезд, ускоренных взрывами сверхновых в протогалактиках, во взаимное отталкивание галактик // Журнал естественнонаучных исследований. -2019. Т. 4. № 3. С. 20-52.
- 17. Владимиров Ю.С. Геометрофизика. М.: БИНОМ. 2005.