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_____________________________________________________________________________________ 

The paper presents statistical estimations of Arctic Oscillation (AO) impact on air temperature 

regime in the eastern part of the Baltic region. The region is characterized by high inter-annual and 

inter-seasonal variability. It is important to note that in the region of global warming extremely low 

winter temperatures can be observed on the European territory of Russia. AO is one of the large-scale 

global patterns of atmospheric circulation closely associated with weather variability in northern 

Europe. AО anomalies occur in the upper atmosphere (stratosphere) and only then are transferred to 

tropospheric lower layers. The anomalies can persist over a long period of time (up to two months); so 

they can serve as precursors in long-range weather forecasts. In turn, changes in stratospheric polar 

vortex and sudden stratospheric warmings can be related to geomagnetic activity. Perhaps geomagnetic 

activity influences the meridional temperature gradient and then changes the structure of the 

stratospheric zonal wind. These changes have an effect on the tropospheric circulation. The 

stratosphere–troposphere coupling takes place during winter months. Therefore, the paper deals with 

extremely cold winter anomalies in the eastern part of the Baltic Sea region. At the same time, we 

examine atmospheric circulation peculiarities associated with AO phase change. We analyze data for 

1951–2014. 

Keywords: Arctic Oscillation, polar vortex, extremely cold months, Eastern Europe, atmospheric 

circulation types. 

_____________________________________________________________________________________ 

INTRODUCTION 

In the eastern part of the Baltic region, the weather during cold seasons is characterized by high 

inter-annual and inter-seasonal variability. The cause for this is the geographic location of the region 

through which various air masses travel. Not far from the Baltic region is the Arctic that produces cold 

air masses. The Atlantic Ocean supplies this region with wet and warm air masses. Extremely cold 

continental air masses come from the east, from Siberia, Asia. 

The main global atmospheric circulation patterns influencing weather conditions both in northern 

Europe and in the region considered are the North Atlantic Oscillation (NAO) and the Arctic Oscillation 
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Unfortunately, the processes that influence the formation of a particular AO phase are still underexplored. 

There are different hypotheses being discussed; especially notable among them is an increase in greenhouse 

gas emission and a decrease in Arctic glaciers [Stricherz, 2001], a variation in stratospheric water vapor 

[Solomon et al., 2010], a change in stratospheric ozone concentration [Wallace, Thompson, 2001], and sudden 

stratospheric warmings [Cohen, 2011; Vargin et al., 2015]. It is important to note that variations in solar and 

geomagnetic activity can cause a change in the phase of NAO (and accordingly AO) responsible for the inter-

latitude heat transfer in the atmosphere and ocean [Zherebtsov et al., 2008].  

Obviously, AO and NAO explain similar variations in pressure distribution; the only difference is 

that NAO is a regional tropospheric mode, whereas AO represents air pressure variability in the entire 

Northern Hemisphere. It has been established that AO anomalies most often emerge in the stratosphere 

and only then are transferred to the troposphere [Baldwin, Dunkerton, 1999]. At the same time, the spatial 

pattern of correlations of inter-annual geomagnetic activity variations during winter with pressure and 

temperature variations in the troposphere and stratosphere of the Northern Hemisphere closely resembles 

the AO pattern. This explains the complex geographical dependence of multiple atmospheric effects of 

geomagnetic activity. This is likely responsible for the enhanced response of atmospheric circulation in 

the region of winter oceanic centers of action with the most pronounced AO [Mordvinov et al., 2007]. 

It is significant that until the end of 1960s the level of geomagnetic activity, AO and NAO intensities 

simultaneously decreased. Then the indices increased, reaching maximum values during the winters of 

1989/90 and 1992/93, and decreased by the beginning of the first decade of the XXIst century [Mordvinov 

et al., 2007а]. In winter seasons with predominant positive AO phase there tends to be lower pressure over 

the Arctic and positive temperature anomalies in northern Eurasia and over much of the USA. Thus, we 

have firm grounds for analyzing possible AO effects on winter weather conditions in the Baltic region. 

The purpose of this paper is to statistically estimate the Arctic Oscillation impact on air 

temperature regime and atmospheric circulation in the eastern part of the Baltic region. 

METHOD 

In the paper, we analyze cold winters over a period 1951–2014 in the eastern part of the Baltic 

region, i.e. on the territory bounded by 54–62° N and 20–33° E (Figure 2). Calculations are done from 

data with a resolution of 0.5°. Results were obtained from data on monthly and daily mean air 

temperature (CPC GHCN/CAMS t2m analysis (land)) at each point of the network (106 points in total) from 

the database of the European Climate Assessment and Dataset KNMI Climate Explorer [http://eca.knmi.nl]. 

Monthly mean values of air temperature at every point were utilized to calculate normalized temperature 

anomalies (1) employed then to identify extremely cold and warm winters for 1951–2014: 

 
,

x x
Z





(1) 

where x  is the multiyear monthly mean surface air temperature; х is a mean temperature for a given 

month and year; σ is an rms temperature deviation. 
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Table 2. Criteria of classification of winter months by the degree of temperature anomaly in the eastern 

part of the Baltic region 

Month  

characteristic  
Extremely 

cold 

Abnormally 

cold 
Cold Norm Warm 

Abnormally 

warm 

Extremely 

warm 

Limits of z 

Category 

z<–2.11 –2.1<z<–1.41 –1.4<z<–0.71 –0.7<z<0.7 0.71<z<1.4 1.41<z<2.1 z>2.11 

–3 –2 –1 0 +1 +2 +3

From monthly mean air temperature values at each point of the network we calculated normalized 

temperature anomalies (z) and singled out particularly cold and warm months for a period from 1951 to 

2014. Thermal winter conditions were determined from the classification proposed by K. Pfister 

[Przybylak et al., 2005; Maheras et al., 1999]. It gives seven criteria of thermal winter conditions – from 

extremely cold to extremely warm ones (Table 2). We have identified 24 cold, 17 abnormally cold, and 4 

extremely cold months. For the period, we have also revealed 39 warm, 8 abnormally warm, and 1 

extremely warm winter months. 

We have established that anomalies of monthly mean air temperature for –1, –2, and –3 categories 

most often cover no less than 50 % of the territory. Such anomalous weather conditions exist under 

changes of the large-scale atmospheric circulation in the Northern Hemisphere. In this period, extremely 

cold months were (year/month) 1978/12, 1987/01, 1956/02, 1985/02; abnormally cold months, 1955/12, 

1967/12, 1969/12, 2001/12, 2002/12, 2010/12, 1963/01, 1966/01, 1967/01, 1968/01, 1969/01, 1972/01, 

1985/01, 2010/01, 1954/01, 1966/02, 1986/02 (Figure 3 a, b).  

Next consider the time dependence of the normalized winter temperature anomalies and the AO 

index from 1950 to 2014. Figure 3, a, b clearly shows a sufficiently high direct correlation between the 

time series: to positive AO index generally correspond positive temperature anomalies; to low AO index, 

negative ones. The correlation between the mean winter air temperature in the entire region and the AO 

index r=0.71 (at 99 % statistical significance). Closer correlations were found for the continental part of 

the territory considered. It can be observed (Figure 3, a, b) that in the second half of the period 

abnormally cold months are much rarely registered, particularly in 1988–2008. This is also clearly 

represented by the AO index variability in this time interval. It has been discovered that in this region the 

Arctic Oscillation affects snow cover characteristics too [Rimkus et al., 2014]. 

The results showing that there is a close correlation between the large-scale atmospheric circulation 

and air temperature variations allow us to estimate how fast the temperature regime responds to the AO 

phase change. To do this, we analyzed the time variation of daily data on temperature anomalies and AO 

index for 17 abnormally cold months in 1951–2014. As an example, we present variations of these 

parameters in December 1955, January 1968, January–February 1986, and December 2010 (Figure 4, a–d). 
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temperature changes rapidly due to atmospheric circulation changes with the AO phase – the average 

reaction time is from 2 to 6 days. 

To estimate atmospheric circulation peculiarities in abnormally cold winter months, we statistically 

analyzed atmospheric circulation types. It was established that the abnormally cold winter months were 

characterized by predominant anticyclonic circulation (41 % of all days) with a frequent airflow transport 

from the eastern quarter of the horizon – 32 % (merely east transport – 13 %, south-east – 13 %, and 

north-east – 6 %). Particularly notable are January 1961, December 1978, and January 2010 with negative 

temperature anomalies being driven by other circulation conditions. 

Notice the relation of the particularly cold months in this region with solar and geomagnetic activity: 

cold months were most often encountered during low solar activity, whereas one of the warmest winters 

(the winter of 1989) coincided with maximum geomagnetic activity and high AO index. Results of other 

studies agree with the statistical relations we found. Mordvinov et al. [Mordvinov et al., 2007а] has 

established that the correlation coefficient between geomagnetic activity and AO index r=0.32. 

CONCLUSION 

We have found a relation between the AO phase and the air temperature in the eastern part of the 

Baltic region (the correlation coefficient r=0.71). The analysis of daily data revealed that in abnormally 

cold winter months AO phase changes caused relatively fast temperature response in this region. This 

occurred due to atmospheric circulation restructuring: the temperature field responded 2–6 days after the 

AO index had changed. During cold periods with the negative AO index there prevailed anticyclonic 

circulation and eastward airflow transport. This is generally uncharacteristic of this region. 

The study was supported by the Russian Science Foundation (grant No. 14-17-00685). 
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