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________________________________________________________________________________ 

 

The method of receiving vectors allows us to determine cosmic ray anisotropy at every moment of time. 

Also, the method makes it possible to study fast anisotropy fluctuations related to the interplanetary 

medium dynamics. Receiving vectors have been calculated earlier for neutron monitors and muon 

telescopes. However, most muon telescopes of the network of cosmic ray stations for which calculations 

were made does not operate now. In recent years, new, improved detectors have been developed. 

Unfortunately, the use of them is limited because of the absence of receiving coefficients. These detectors 

include a matrix telescope in Novosibirsk. Therefore, receiving vector components for muon telescopes of 

observation cosmic ray station Novosibirsk have been defined. Besides, design features of the facility, its 

orientation, and directional diagram depending on zenith and azimuth angles were taken into account. 

Also, for the system of telescopes, we allowed for coupling coefficients found experimentally by the test 

detector. 
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_______________________________________________________________________________ 

 

INTRODUCTION 

 

Receiving vectors have previously been calculated for neutron monitors [Mori, 1968a; Yasue et al., 1982; 

Grigoryev, Chirkov, 1978] and muon telescopes [Mori, 1968b; Grigoryev et al., 2007]. Most muon 

telescopes of the network of cosmic ray (CR) stations for which the receiving vectors were computed are 

not operating now. In recent years, a number of new, modernized detectors have been developed. 

Unfortunately, their usage is limited for lack of receiving coefficients for them. Among these detectors is 

a matrix telescope in Novosibirsk. A multichannel observation CR complex (MOCRC) in Novosibirsk 

[Yanchukovsky, 2010] functionally includes a neutron monitor 24NM-64, a spectrograph based on the 

effect of local generation of neutrons [Yanchukovsky, Yanchukovsky, 1982; Yanchukovsky, Filimonov, 

2000], and the matrix muon telescope [Yanchukovsky, 2006а]. The matrix structure provides an 

individual CR station with a whole system of multi-directional muon telescopes. Being special-purpose, 

muon telescopes are more suitable to observe CR anisotropy than neutron monitors. It is necessary to 
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determine CR anisotropy and gradients with energy 1–250 GeV in order to devise methods for 

diagnostics of interplanetary medium, using ground-based CR observations. The global survey method 

worked out by IKFIA SB RAS [Krymsky et al., 1966] enables us to identify CR anisotropy at every 

instant of time and to study fast anisotropy fluctuations related to interplanetary medium dynamics. It 

combines three methods [Belov et al., 2004]: 

 a coupling coefficient method [Dorman, 1957];  

 a method for trajectory calculations of particle motion in the geomagnetic field [Dorman et al., 1971];  

 a method of spherical analysis allowing us to determine spherical harmonics for further analysis 

[Kolmogorov, Fomin, 1989].  

 

Harmonic coefficients are coefficients of receiving vectors for CR detectors and a vector 

characterizing CR anisotropy in interplanetary space.  

 

METHOD OF RECEIVING VECTORS 

 

The CR intensity detected by a device in the atmosphere depends on its receiving characteristics 

representing the geometry and geographical location of the device and a type of observable secondary 

particles. To take into account effects of these parameters, IKFIA SB RAS developed a method of 

receiving vectors [Kuzmin, 1968]. 

 

The distribution of CR over a sphere I (θ, φ) outside the magnetosphere can be presented as a series 

expansion in a system of spherical functions being solutions of Laplace’s equation: 

        
0 0

, cos sin sin ,
n

m m m
n n n

n m

I a m b m P


 

         (1) 

where θ, φ are latitude and longitude angles in a coordinate system,  sinm
nP   are associated Legendre 

functions. It is convenient to represent this distribution as a multidimensional vector  ,m m
n nA a b


with an 

infinite number of components 0th ≤ m ≤ n ≤ ∞. Then for each point device we can identify a receiving 

vector R


 such that the CR intensity I, registered by the device, is equal to the scalar product: 

.I AR
 

 (2) 

From these equations it follows that  

 ,m m
n nR x y


, where    cos sinm m

n nx m P    

   sin sinm m
n ny m P   .  (3) 

To find receiving vectors for real devices, we have to know directional diagrams of a detector N(θ, 

φ), coupling coefficients W(E) between secondary and primary particles, energy spectrum fn(E) of CR 

variations under study, and asymptotic angles of arrival Ψ(E, θ, φ), Ф(Е, θ, φ). Cosmic ray distributions 

expanding in spherical functions, the series converges rapidly. Therefore, along with the isotropic 

component, the first two harmonics of distribution with experimentally observed effects are usually taken 
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from a direction of 26° from the vertical (b) 

The angular dependence of CR intensity is defined by the following equation  

I(θ)=I0cosγθ,   (4)  

where I0 is the absolute intensity of vertically arriving particles that is 0.5 cm–2 min–1 sr–1 [Murzin, 1970], 

γ is the exponent of angular distribution of particles (for Earth’s surface γ = 1.3). Then the muon 

telescope count rate Ncount is found as 

Ncount = I0C,  (5) 

where C is called the telescope luminosity [Kuzmin, 1968] and is defined by  

  1

0 0

, cos sinC S d d
 

        .  (6)  

Here S(θ, φ) is an area crossed by particles with coincidences being registered in a chosen direction, 

depending on zenith θ and azimuth φ angles of their arrival. The exponent γ in (6) depends on the height 

of observation relative to Earth’s surface. The side of a detector square cell L=45 cm, and the distance 

between bottom and top layers of cells, set for coincidence, H=103 cm (Figure 2). The directional 

diagram for one detector block is calculated for directions of registration at zenith angles of 0, 26, 44, 55, 

and 63°. Expected count rates (without regard to the mass of the neutron monitor) are estimated for 

different zenith angles of the muon telescope. The front location of the neutron monitor in a direction of 

30° NW is taken as 0° azimuth angle. 

 

DIRECTION FOR REGISTRATION OF PARTICLES AT A ZENITH ANGLE 

OF 0° (VERTICAL) 

 

The area S(θ, φ) crossed by particles with coincidences being registered from a vertical direction for one 

detector block is found as 

S(θ, φ)=(L–Htgθcosφ)(L–Htgθsinφ), (7) 

where, on condition of coincidences, each factor in brackets cannot be less than zero. When calculating a 

directional diagram, the angle to start integration is determined by the type of the diagram – azimuth or 

zenith. For luminosity of the telescope recording vertically arriving particles we have 

 
2 2

1
верт

0 0

, cos sin cos .C S d d
 

          (8) 

Additional cosθ accounts for a corner between the surface of the top layer of detector matrix and the 

direction of incident particles. The telescope designed to record vertically arriving particles collects 

particles from all azimuths; in this case Cvert is multiplied by 4. Given I0, obtain the count rate of one block 

Nvert=10026 pulse/hr. Then the count rate of the telescope comprising 24 blocks (one section of the 

facility) 24
vert 240624 pulse/hr.N   

 

 



V.L. Yanchukovsky, V.G. Grigoryev, G.F. Krymsky, V.S. Kuzmenko, A.D. Molchanov 

107 
 

 

DIRECTION FOR REGISTRATION OF PARTICLES AT ZENITH ANGLES 

OF 26, 44, 55, and 63° 

 

For the said zenith angles, let us consider azimuth directions of 30° NW, 30° WS, 30° SE, 30°EN. The 

area S(θ, φ), crossed by particles with coincidences being recorded, for oblique directions of the telescope 

consists of two parts: 

S(θ, φ)=S1(θ, φ)+S2(θ, φ),  (9) 

where S1(θ, φ)=(H tg θ cos φ–r)(L–H tg θsin φ), θ≤θT;   (10) 

S2(θ, φ)=(r1–H tg θcos φ)(L–Htg θ sin φ), θ≥θT. (11) 

Here θT is a zenith angle of telescope axis (direction); r, r1 are the shortest and longest distances in a 

horizontal plane between sides of upper and lower cells set for coincidence. For θT=26, 44, 55, and 63°, 

we have r=5, 55, 105, and 155 cm, r1=95, 145, 195, and 245 cm respectively.  

 

According to the above calculation procedure for the count rate of the telescope detecting vertically 

arriving particles, we obtained expected count rates for angled telescopes 
T

nN   (here n is the total number 

of cell pairs, set for coincidence, for the angled telescope at a zenith angle θT): 

20
26N (NW, SE)=130700 pulse/hr;  

18
26N (WS, EN)=117630 pulse/hr; 

16
44N (NW, SE)=35060 pulse/hr;  

12
44N (WS, EN)=26300 pulse/hr; 

12
55N (NW, SE)=7800 pulse/hr;  

6
55N (WS, EN)=4000 pulse/hr; 

8
63N (NW, SE)=1710 pulse/hr. 

In brackets are azimuth directions of the telescopes. Figure 3 shows zenith and azimuth directional 

diagrams for vertical and angled directions of the system of muon telescopes included into the MOCCR. 

 

COUPLING COEFFICIENTS 

 

Coupling coefficients W, according to the definition offered by Dorman [Dorman, 1957], 

characterize relative sensitivity of a detector to protons of primary cosmic rays with different energies. 

Coupling coefficients for channels of the matrix muon telescope included into the MOCRC were found 

through theoretical calculations [Yanchukovsky, 1986] and experimentally [Yanchukovsky, 2006b; 

Yanchukovsky, 2007] through the method of test detector [Dvornikov et al., 1989]. The coupling 

coefficients normalized to 100% were determined as 
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From a distance of 3r0 (r0 is the Earth radius), the contribution of harmonics above the second one to the 

geomagnetic field is less than 1 %; the step h was then chosen as h=h0(r/3r0). The trajectories were being 

determined until one of the following conditions had been fulfilled: r ≤ r0, n = 15000, r ≥ 25r0, where n is the 

number of integration steps. Fulfillment of the first two conditions corresponded to forbidden trajectories. The 

distance 25r0 being reached, the integration was stopped and finite particle trajectories were used to find the 

asymptotic latitude Ф(E, θ, φ) and longitude Ψ(E, θ, φ). 

 

ENERGY SPECTRUM 

 

The results available from determination of energy spectra of the first and second spherical 

harmonics for CR distribution show a wide range of spectral variations. Their choice depends on 

problems to solve in studying CR distribution with these harmonics. To find components of the first 

harmonic, we selected a spectrum f1(E) as 

f1(E)~E–γ if E≤E0, 

f1(E)=0 if E>E0. 

Here γ takes values 0, 1, 2; and E0, 30, 70, 150 GeV. 

 

To gauge the second spherical harmonic, we employed a spectrum f2(E) from [Krivoshapkin et al., 

1989] where a screening mechanism for its generation is proposed. After approximation, it can be 

represented as follows: 

f2(E) ~ (E/E0) if E ≤ E0, 

f2(E) ~ (E/E0)
–2 if E > E0, (13) 

where E0=30, 70, 150 GeV. 

 

RECEIVING VECTORS 

 

Receiving vector components were calculated from the following equation [Chirkov et al., 1967]:  

            

       

min

min

2 2
, ,

0 0

2 2

0 0

, sin sin Ф , ,

,

, sin

im E m
n n

Em
n

n

E

W E f E N e P E dEd d

Z

W E f E N dEd d


 

  


 

      



    

  

  
 (14) 

where .m m m
n n nZ x iy   

 

The product     , , sinФ , ,im E m
ne P E     contains components  

0 1 1
1 1 1sinФ; cosФcos ; cosФsin ;x x y      

0 2 1 1
2 2 2

3 1
sin Ф ; sin 2Ф cos ; sin 2Ф sin ;

2 2
x x y       
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2 2 2 2
2 2cos Ф cos 2 ; cos Фsin 2 .x y     

The component 0
1x  characterizes sensitivity of this detector to the contribution the first harmonic 

makes to the isotropic CR intensity component. The components 1
1x  and 1

1y  are respective radial and 

azimuth first harmonic components in geographic (UT) or intrinsic (LT) coordinate system. The LT 

components of receiving vectors are meant to analyze data for local time. For the global survey method, 

we have to use the UT components of receiving vectors. The modulus    2 21 1 1
1 1 1Z x y   and the angle

 1 1 1
1 1 1arctgQ y x  describe the observable amplitude and phase variations in primary parameters of the 

first harmonic as function of latitude and longitude of an observation point. The amplitude varies over 

1
11 / Z ; and the phase, over 1

1Q degrees (i.e. with a positive value, they are shifted to a later time). For 

example, the receiving coefficients for the muon telescope at the CR station Novosibirsk (LT) in a 

vertical direction for the first harmonic (diurnal variation) are 1
1 0.56x   and 1

1 0.75y  . In this case, the 

modulus of vector 1
1 0.936Z  , the angle, 1

1 53.3Q   , i.e. the observed amplitude is reduced 1.07 times 

with respect to the initial one; and the phase is shifted by 53.3° (to a later time). 

 

The component 0
2x  characterizes the contribution the second spherical harmonic makes to the 

isotropic CR intensity. The components 1
2x  and 1

2y  represent the antisymmetric diurnal variation resulting 

from the contribution of the second harmonic to the first one. Its phases are opposite in the Northern and 

Southern hemispheres. Accordingly, 2
2x  and 2

2y  are components of the second spherical harmonic of CR 

distribution. The moduli    2 21 1 1
2 2 2 ,Z x y     2 22 2 2

2 2 2Z x y   and angles  1 1 1
2 2 2arctg ,Q y x

 2 2 2
2 2 2arctgQ y x  characterize their variations relative to the initial distribution, depending on 

coordinates of a CR station.  

 

Figure 5, a–d illustrates receiving vector components for the first spherical harmonic of CR distribution 

for azimuth directions of 34° SW, 34° NW, 34° SE, and 34° NE (LT) for Е0=70 GeV and γ=0, 1, 2. The results 

of calculation of the receiving vector components we obtained for the first and second spherical harmonics of 

CR distribution are listed in Tables 1–7 (Appendix A). 

 

CONCLUSION 

 

We have found receiving vector components for the muon telescope of the observation CR complex 

in Novosibirsk. Design features of the facility, its orientation, directional diagrams depending on zenith 

and azimuth angles, coupling coefficients for the complex of telescopes determined experimentally by the 

method of test detector were taken into account. The receiving characteristics of the complex we 

presented here are necessary to analyze modulation effects of CR intensity in a wide range of energies of 

primary particles. 
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APPENDIX A 
 

Table 1. Receiving vector components of the first harmonic in a vertical direction 

LT 

 E0=30 GeV E0=70 GeV E0=150 GeV 

θ° γ 0

1x  1

1x  1

1y  0

1x  1

1x  1

1y  0

1x  1

1x  1

1y  

0 

0 

1 

2 

0.25 

0.16 

0.06 

0.55 

0.55 

0.53 

0.75 

0.78 

0.81 

0.50 

0.30 

0.12 

0.49 

0.52 

0.52 

0.62 

0.71 

0.78 

0.55 

0.33 

0.13 

0.47 

0.51 

0.52 

0.58 

0.69 

0.78 

UT 

 E0=30 GeV E0=70 GeV E0=150 GeV 

θ° γ 0

1x  1

1x  1

1y  0

1x  1

1x  1

1y  0

1x  1

1x  1

1y  

0 

0 

1 

2 

0.25 

0.16 

0.06 

–0.68 

–0.71 

–0.74 

0.64 

0.64 

0.63 

0.50 

0.30 

0.12 

–0.56 

–0.64 

–0.71 

0.56 

0.60 

0.62 

0.55 

0.33 

0.13 

–0.52 

–0.63 

–0.71 

0.54 

0.59 

0.61 
 

 

Table 2. Receiving vector components of the first harmonic in directions φ=34° NE and θ=26, 44, 55, and 63° 

LT 

E0=30 GeV E0=70 GeV E0=150 GeV 

θ° γ 0

1x  1

1x  1

1y  0

1x  1

1x  1

1y  0

1x  1

1x  1

1y  

26 0 

1 

2 

0.22 

0.15 

0.09 

0.50 

0.53 

0.55 

0.80 

0.81 

0.81 

0.49 

0.31 

0.16 

0.38 

0.46 

0.52 

0.69 

0.75 

0.79 

0.55 

0.34 

0.17 

0.35 

0.44 

0.52 

0.64 

0.73 

0.78 
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44 0 

1 

2 

0.64 

0.54 

0.43 

0.44 

0.48 

0.53 

0.51 

0.57 

0.62 

0.82 

0.70 

0.54 

0.32 

0.39 

0.48 

0.30 

0.40 

0.52 

0.84 

0.71 

0.55 

0.31 

0.38 

0.47 

0.31 

0.40 

0.52 

55 0 

1 

2 

0.75 

0.70 

0.64 

0.25 

0.29 

0.33 

0.55 

0.57 

0.60 

0.92 

0.87 

0.79 

0.07 

0.12 

0.19 

0.26 

0.32 

0.41 

0.92 

0.88 

0.80 

0.05 

0.11 

0.18 

0.29 

0.33 

0.41 

63 

0 

1 

2 

0.78 

0.77 

0.75 

0.15 

0.16 

0.18 

0.57 

0.58 

0.60 

0.95 

0.94 

0.92 

–0.11 

–0.09 

–0.05 

0.19 

0.21 

0.21 

0.93 

0.93 

0.92 

–0.13 

–0.11 

–0.07 

0.28 

0.27 

0.27 

UT 

E0=30 GeV E0=70 GeV E0=150 GeV 

θ° γ 0

1x  1

1x  1

1y  0

1x  1

1x  1

1y  0

1x  1

1x  1

1y  

26 

0 

1 

2 

0.22 

0.15 

0.09 

–0.74 

–0.74 

–0.73 

0.59 

0.62 

0.65 

0.49 

0.31 

0.16 

–0.64 

–0.69 

–0.72 

0.46 

0.54 

0.61 

0.55 

0.34 

0.17 

–0.59 

–0.67 

–0.71 

0.43 

0.53 

0.61 

44 

0 

1 

2 

0.64 

0.54 

0.43 

–0.45 

–0.50 

–0.55 

0.49 

0.55 

0.60 

0.82 

0.70 

0.54 

–0.11 

–0.27 

–0.43 

0.34 

0.43 

0.53 

0.84 

0.71 

0.55 

–0.02 

–0.22 

–0.41 

0.32 

0.41 

0.53 

55 

0 

1 

2 

0.75 

0.70 

0.64 

–0.51 

–0.53 

–0.56 

0.32 

0.35 

0.40 

0.92 

0.87 

0.79 

–0.10 

–0.21 

–0.33 

0.12 

0.17 

0.25 

0.92 

0.88 

0.80 

0.02 

–0.14 

–0.29 

0.11 

0.16 

0.24 

63 

0 

1 

2 

0.78 

0.77 

0.75 

–0.55 

–0.56 

–0.57 

0.21 

0.23 

0.25 

0.95 

0.94 

0.92 

0.03 

–0.04 

–0.13 

0.14 

0.13 

0.13 

0.93 

0.93 

0.92 

0.18 

0.09 

–0.03 

0.17 

0.16 

0.15 
 

Table 3. Receiving vector components of the first harmonic in directions φ=34° NW and θ=26, 44, 55, and 63° 

LT 

E0=30 GeV E0=70 GeV E0=150 GeV 

θ° γ 0
1x  1

1x  1
1y  0

1x  1
1x  1

1y  0
1x  1

1x  1
1y  

26 0 

1 

2 

0.21 

0.14 

0.08 

0.50 

0.53 

0.55 

0.81 

0.81 

0.81 

0.48 

0.30 

0.15 

0.38 

0.46 

0.52 

0.70 

0.75 

0.79 

0.54 

0.33 

0.16 

0.35 

0.45 

0.52 

0.65 

0.73 

0.78 

44 0 

1 

2 

0.09 

0.06 

0.04 

0.44 

0.48 

0.52 

0.87 

0.85 

0.83 

0.41 

0.27 

0.14 

0.24 

0.34 

0.45 

0.80 

0.82 

0.82 

0.48 

0.31 

0.16 

0.19 

0.32 

0.44 

0.75 

0.80 

0.82 

55 0 

1 

2 

–0.07 

–0.08 

–0.09 

0.37 

0.39 

0.42 

0.91 

0.90 

0.88 

0.26 

0.17 

0.09 

0.13 

0.20 

0.28 

0.91 

0.91 

0.90 

0.36 

0.23 

0.12 

0.07 

0.16 

0.26 

0.87 

0.89 

0.90 

63 0 

1 

2 

–0.20 

–0.20 

–0.20 

0.32 

0.33 

0.35 

0.92 

0.91 

0.91 

0.22 

0.17 

0.10 

–0.01 

0.03 

0.09 

0.95 

0.95 

0.95 

0.35 

0.27 

0.18 

–0.09 

–0.04 

0.03 

0.90 

0.91 

0.93 

 



V.L. Yanchukovsky, V.G. Grigoryev, G.F. Krymsky, V.S. Kuzmenko, A.D. Molchanov 

115 
 

UT 

E0=30 GeV E0=70 GeV E0=150 GeV 

θ° γ 0
1x  1

1x  1
1y  0

1x  1
1x  1

1y  0
1x  1

1x  1
1y  

26 0 

1 

2 

0.21 

0.14 

0.08 

–0.74 

–0.74 

–0.74 

0.59 

0.62 

0.64 

0.48 

0.30 

0.15 

–0.64 

–0.68 

–0.72 

0.46 

0.55 

0.61 

0.54 

0.33 

0.16 

–0.60 

–0.68 

–0.72 

0.43 

0.53 

0.61 

44 0 

1 

2 

0.09 

0.06 

0.04 

–0.81 

–0.78 

–0.76 

0.54 

0.58 

0.62 

0.41 

0.27 

0.14 

–0.76 

–0.77 

–0.76 

0.34 

0.44 

0.54 

0.48 

0.31 

0.16 

–0.72 

–0.76 

–0.76 

0.28 

0.41 

0.53 

55 0 

1 

2 

–0.07 

–0.08 

–0.09 

–0.86 

–0.85 

–0.83 

0.48 

0.50 

0.53 

0.26 

0.17 

0.09 

–0.88 

–0.88 

–0.86 

0.24 

0.31 

0.39 

0.36 

0.23 

0.12 

–0.85 

–0.86 

–0.86 

0.18 

0.27 

0.37 

63 0 

1 

2 

–0.20 

–0.20 

–0.20 

–0.87 

–0.87 

–0.86 

0.43 

0.44 

0.46 

0.22 

0.17 

0.10 

–0.94 

–0.94 

–0.93 

0.11 

0.15 

0.20 

0.35 

0.27 

0.18 

–0.90 

–0.91 

–0.92 

0.02 

0.07 

0.14 

 

Table 4. Receiving vector components of the first harmonic in directions φ=34° SE and θ=26, 44, 55, and 63° 

LT 

E0=30 GeV E0=70 GeV E0=150 GeV 

θ° γ 0
1x  1

1x  1
1y  0

1x  1
1x  1

1y  0
1x  1

1x  1
1y  

26 0 

1 

2 

0.19 

0.15 

0.10 

0.77 

0.74 

0.69 

0.58 

0.62 

0.68 

0.27 

0.20 

0.13 

0.80 

0.76 

0.71 

0.49 

0.57 

0.65 

0.29 

0.21 

0.13 

0.80 

0.77 

0.71 

0.47 

0.55 

0.64 

44 0 

1 

2 

0.42 

0.40 

0.37 

0.84 

0.82 

0.79 

0.26 

0.33 

0.40 

0.38 

0.38 

0.37 

0.89 

0.86 

0.82 

0.15 

0.23 

0.34 

0.36 

0.38 

0.36 

0.90 

0.86 

0.82 

0.14 

0.22 

0.33 

55 0 

1 

2 

0.54 

0.54 

0.54 

0.82 

0.82 

0.81 

0.13 

0.15 

0.17 

0.37 

0.42 

0.46 

0.88 

0.87 

0.85 

0.23 

0.21 

0.20 

0.33 

0.39 

0.44 

0.89 

0.87 

0.85 

0.25 

0.22 

0.21 

63 0 

1 

2 

0.55 

0.55 

0.56 

0.80 

0.80 

0.80 

0.21 

0.20 

0.19 

0.25 

0.28 

0.33 

0.88 

0.87 

0.86 

0.38 

0.36 

0.34 

0.17 

0.22 

0.28 

0.89 

0.88 

0.87 

0.39 

0.38 

0.35 

UT 

E0=30 GeV E0=70 GeV E0=150 GeV 

θ° γ 0
1x  1

1x  1
1y  0

1x  1
1x  1

1y  0
1x  1

1x  1
1y  

26 0 

1 

2 

0.19 

0.15 

0.10 

–0.48 

–0.53 

–0.59 

0.84 

0.81 

0.77 

0.27 

0.20 

0.13 

–0.39 

–0.47 

–0.56 

0.85 

0.83 

0.78 

0.29 

0.21 

0.13 

–0.37 

–0.46 

–0.55 

0.86 

0.83 

0.78 
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44 0 

1 

2 

0.42 

0.40 

0.37 

–0.15 

–0.22 

–0.30 

0.86 

0.85 

0.84 

0.38 

0.38 

0.37 

0.03 

–0.08 

–0.21 

0.89 

0.88 

0.85 

0.36 

0.38 

0.36 

0.06 

–0.06 

–0.21 

0.90 

0.88 

0.85 

55 0 

1 

2 

0.54 

0.54 

0.54 

0.13 

0.09 

0.04 

0.81 

0.81 

0.81 

0.37 

0.42 

0.46 

0.31 

0.26 

0.18 

0.85 

0.84 

0.83 

0.33 

0.39 

0.44 

0.34 

0.28 

0.19 

0.86 

0.85 

0.83 

63 0 

1 

2 

0.55 

0.55 

0.56 

0.29 

0.28 

0.26 

0.77 

0.77 

0.77 

0.25 

0.28 

0.33 

0.48 

0.46 

0.44 

0.83 

0.82 

0.81 

0.17 

0.22 

0.28 

0.50 

0.48 

0.45 

0.84 

0.83 

0.82 

 

Table 5. Receiving vector components of the first harmonic in directions φ=34° SW and θ=26, 44, 55, and 63° 

LT 

E0=30 GeV E0=70 GeV E0=150 GeV 

θ° γ 0
1x  1

1x  1
1y  0

1x  1
1x  1

1y  0
1x  1

1x  1
1y  

26 0 

1 

2 

0.06 

0.03 

0.00 

0.55 

0.56 

0.55 

0.81 

0.82 

0.82 

0.28 

0.15 

0.05 

0.49 

0.52 

0.54 

0.77 

0.80 

0.81 

0.34 

0.18 

0.06 

0.47 

0.51 

0.54 

0.75 

0.79 

0.81 

44 0 

1 

2 

–0.07 

–0.06 

–0.04 

0.67 

0.67 

0.67 

0.74 

0.73 

0.74 

0.04 

0.00 

–0.02 

0.64 

0.65 

0.66 

0.75 

0.75 

0.74 

0.08 

0.02 

–0.02 

0.63 

0.65 

0.66 

0.75 

0.75 

0.74 

55 0 

1 

2 

–0.18 

–0.17 

–0.15 

0.71 

0.71 

0.72 

0.68 

0.67 

0.67 

–0.13 

–0.14 

–0.15 

0.67 

0.68 

0.69 

0.72 

0.71 

0.70 

–0.09 

–0.12 

–0.14 

0.66 

0.67 

0.69 

0.73 

0.72 

0.70 

63 0 

1 

2 

–0.28 

–0.28 

–0.27 

0.69 

0.70 

0.70 

0.66 

0.66 

0.65 

–0.26 

–0.27 

–0.27 

0.62 

0.62 

0.63 

0.74 

0.73 

0.72 

–0.21 

–0.23 

–0.25 

0.61 

0.62 

0.63 

0.76 

0.74 

0.73 

UT 

E0=30 GeV E0=70 GeV E0=150 GeV 

θ° γ 0
1x  1

1x  1
1y  0

1x  1
1x  1

1y  0
1x  1

1x  1
1y  

26 0 

1 

2 

0.06 

0.03 

0.00 

–0.74 

–0.74 

–0.75 

0.65 

0.65 

0.65 

0.28 

0.15 

0.05 

–0.71 

–0.73 

–0.74 

0.58 

0.61 

0.63 

0.34 

0.18 

0.06 

–0.69 

–0.72 

–0.74 

0.56 

0.61 

0.63 

44 0 

1 

2 

–0.07 

–0.06 

–0.04 

–0.65 

–0.65 

–0.65 

0.75 

0.75 

0.75 

0.04 

0.00 

–0.02 

–0.67 

–0.66 

–0.66 

0.73 

0.74 

0.74 

0.08 

0.02 

–0.02 

–0.67 

–0.66 

–0.66 

0.72 

0.73 

0.74 

55 0 

1 

2 

–0.18 

–0.17 

–0.15 

–0.59 

–0.58 

–0.58 

0.78 

0.79 

0.80 

–0.13 

–0.14 

–0.15 

–0.64 

–0.62 

–0.61 

0.75 

0.76 

0.77 

–0.09 

–0.12 

–0.14 

–0.65 

–0.63 

–0.61 

0.75 

0.76 

0.77 
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63 0 

1 

2 

–0.28 

–0.28 

–0.27 

–0.57 

–0.57 

–0.56 

0.77 

0.77 

0.78 

–0.26 

–0.27 

–0.27 

–0.66 

–0.65 

–0.63 

0.70 

0.71 

0.72 

–0.21 

–0.23 

–0.25 

–0.68 

–0.66 

–0.65 

0.70 

0.70 

0.71 

Table 6. Receiving vector components (UT) of the second harmonics 

θ° E0, GeV 0
2x  1

2x  1
2y  2

2x  2
2y  

Vertical 

0 

30 

70 

150 

–0.02 

0.29 

0.41 

–0.51 

–0.53 

–0.46 

0.53 

0.64 

0.65 

0.02 

–0.04 

–0.06 

–0.67 

–0.45 

–0.36 

Direction φ=34° SW 

26 

30 

70 

150 

–0.27 

–0.23 

–0.22 

–0.16 

–0.11 

–0.08 

0.64 

0.71 

0.73 

–0.67 

–0.73 

–0.74 

–0.42 

–0.26 

–0.19 

44 

30 

70 

150 

0.08 

–0.02 

–0.09 

0.16 

0.32 

0.34 

0.88 

0.80 

0.74 

–0.45 

–0.41 

–0.39 

0.17 

0.44 

0.53 

55 

30 

70 

150 

0.24 

0.02 

–0.10 

0.44 

0.56 

0.53 

0.78 

0.66 

0.57 

–0.16 

–0.04 

0.01 

0.40 

0.61 

0.71 

63 

30 

70 

150 

0.05 

–0.15 

–0.28 

0.63 

0.62 

0.50 

0.55 

0.45 

0.35 

0.14 

0.24 

0.29 

0.59 

0.71 

0.79 

Direction φ=34° NW 

26 

30 

70 

150 

–0.07 

0.29 

0.44 

–0.56 

–0.66 

–0.59 

0.37 

0.42 

0.41 

0.22 

0.16 

0.12 

–0.65 

–0.42 

–0.32 

44 

30 

70 

150 

–0.20 

0.14 

0.33 

–0.52 

–0.76 

–0.74 

0.16 

0.16 

0.10 

0.46 

0.42 

0.31 

–0.59 

–0.32 

–0.21 

55 

30 

70 

150 

–0.34 

–0.13 

0.02 

–0.32 

–0.69 

–0.77 

0.02 

0.03 

–0.05 

0.67 

0.67 

0.55 

–0.51 

–0.23 

–0.10 

63 

30 

70 

150 

–0.32 

–0.21 

–0.01 

–0.38 

–0.66 

–0.79 

–0.05 

–0.07 

–0.19 

0.78 

0.77 

0.60 

–0.21 

0.00 

0.15 

Direction φ= 34° SE 

26 

30 

70 

150 

–0.37 

–0.30 

–0.26 

–0.19 

–0.20 

–0.19 

0.47 

0.58 

0.63 

–0.58 

–0.64 

–0.65 

–0.66 

–0.55 

–0.50 
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44 

30 

70 

150 

–0.25 

–0.31 

–0.33 

0.01 

0.08 

0.09 

0.70 

0.62 

0.58 

–0.76 

–0.80 

–0.80 

0.04 

0.22 

0.28 

55 

30 

70 

150 

–0.22 

–0.35 

–0.39 

0.21 

0.20 

0.17 

0.68 

0.50 

0.40 

–0.61 

–0.61 

–0.61 

0.48 

0.63 

0.68 

63 

30 

70 

150 

–0.36 

–0.44 

–0.47 

0.22 

0.15 

0.07 

0.40 

0.24 

0.10 

–0.45 

–0.45 

–0.45 

0.77 

0.84 

0.85 

Direction φ=34° NE 

26 

30 

70 

150 

–0.05 

0.31 

0.46 

–0.57 

–0.65 

–0.58 

0.37 

0.42 

0.41 

0.21 

0.16 

0.11 

–0.64 

–0.40 

–0.31 

44 

30 

70 

150 

0.59 

0.71 

0.64 

–0.19 

0.24 

0.43 

0.52 

0.45 

0.42 

–0.02 

0.02 

0.08 

–0.19 

0.01 

0.08 

55 

30 

70 

150 

0.74 

0.83 

0.72 

–0.27 

0.22 

0.16 

0.23 

0.14 

0.13 

0.09 

0.09 

0.17 

–0.12 

–0.01 

0.02 

63 

30 

70 

150 

0.78 

0.77 

0.59 

0.04 

0.41 

0.65 

0.25 

0.32 

0.32 

0.09 

0.08 

0.20 

0.03 

0.09 

0.16 

 

Table 7. Receiving vector components (LT) of the second harmonics 

θ° E0, ГэВ 0

2x  1

2x  1

2y  2

2x  2

2y  

Vertical 

0 

30 

70 

150 

–0.02 

0.29 

0.41 

0.46 

0.57 

0.59 

0.57 

0.61 

0.54 

–0.18 

–0.07 

–0.03 

0.65 

0.45 

0.36 

Direction φ=34° SW 

26 

30 

70 

150 

–0.27 

–0.23 

–0.22 

0.62 

0.69 

0.72 

0.24 

0.20 

0.17 

0.55 

0.65 

0.68 

0.57 

0.43 

0.38 

44 

30 

70 

150 

0.08 

–0.02 

–0.09 

0.89 

0.84 

0.78 

0.22 

0.28 

0.29 

0.48 

0.50 

0.50 

0.30 

0.40 

0.47 

55 

30 

70 

150 

0.24 

0.02 

–0.10 

0.83 

0.73 

0.63 

0.40 

0.49 

0.47 

0.25 

0.19 

0.16 

0.40 

0.60 

0.69 
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63 

30 

70 

150 

0.05 

–0.15 

–0.28 

0.62 

0.53 

0.41 

0.56 

0.56 

0.45 

0.01 

–0.06 

–0.09 

0.61 

0.75 

0.84 

Direction φ=34° NW 

26 

30 

70 

150 

–0.07 

0.29 

0.44 

0.30 

0.34 

0.33 

0.60 

0.70 

0.63 

–0.37 

–0.26 

–0.19 

0.58 

0.36 

0.28 

44 

30 

70 

150 

–0.20 

0.14 

0.33 

0.10 

0.07 

0.01 

0.53 

0.77 

0.74 

–0.59 

–0.48 

–0.38 

0.46 

0.21 

0.13 

55 

30 

70 

150 

–0.34 

–0.13 

0.02 

–0.02 

–0.05 

–0.14 

0.32 

0.68 

0.76 

–0.77 

–0.70 

–0.56 

0.33 

0.06 

–0.04 

63 

30 

70 

150 

–0.32 

–0.21 

–0.01 

–0.10 

–0.15 

–0.29 

0.37 

0.64 

0.76 

–0.81 

–0.74 

–0.54 

0.02 

–0.19 

–0.29 

Direction φ=34° SE 

26 

30 

70 

150 

–0.37 

–0.30 

–0.26 

0.44 

0.56 

0.61 

0.25 

0.27 

0.27 

0.41 

0.48 

0.51 

0.78 

0.69 

0.64 

44 

30 

70 

150 

–0.25 

–0.31 

–0.33 

0.69 

0.63 

0.58 

0.11 

0.08 

0.07 

0.75 

0.83 

0.84 

0.24 

0.19 

0.20 

55 

30 

70 

150 

–0.22 

–0.35 

–0.39 

0.70 

0.52 

0.42 

0.15 

0.15 

0.12 

0.71 

0.74 

0.75 

0.36 

0.48 

0.52 

63 

30 

70 

150 

–0.36 

–0.44 

–0.47 

0.42 

0.26 

0.11 

0.17 

0.12 

0.06 

0.63 

0.64 

0.65 

0.64 

0.71 

0.72 

Direction φ=34° NE 

26 

30 

70 

150 

–0.05 

0.31 

0.46 

0.30 

0.34 

0.33 

0.61 

0.70 

0.62 

–0.36 

–0.25 

–0.19 

0.57 

0.35 

0.27 

44 

30 

70 

150 

0.59 

0.71 

0.64 

0.50 

0.47 

0.46 

0.44 

0.45 

0.55 

–0.02 

–0.02 

–0.06 

0.24 

0.17 

0.20 

55 

30 

70 

150 

0.74 

0.83 

0.72 

0.15 

0.05 

0.04 

0.53 

0.49 

0.63 

–0.12 

–0.09 

–0.17 

0.10 

0.03 

0.03 

63 

30 

70 

150 

0.78 

0.77 

0.59 

–0.18 

–0.26 

–0.23 

0.48 

0.53 

0.72 

–0.10 

–0.11 

–0.23 

–0.03 

–0.08 

–0.11 

 


