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The method of receiving vectors allows us to determine cosmic ray anisotropy at every moment of time.
Also, the method makes it possible to study fast anisotropy fluctuations related to the interplanetary
medium dynamics. Receiving vectors have been calculated earlier for neutron monitors and muon
telescopes. However, most muon telescopes of the network of cosmic ray stations for which calculations
were made does not operate now. In recent years, new, improved detectors have been developed.
Unfortunately, the use of them is limited because of the absence of receiving coefficients. These detectors
include a matrix telescope in Novosibirsk. Therefore, receiving vector components for muon telescopes of
observation cosmic ray station Novosibirsk have been defined. Besides, design features of the facility, its
orientation, and directional diagram depending on zenith and azimuth angles were taken into account.
Also, for the system of telescopes, we allowed for coupling coefficients found experimentally by the test

detector.
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INTRODUCTION

Receiving vectors have previously been calculated for neutron monitors [Mori, 1968a; Yasue et al., 1982;
Grigoryev, Chirkov, 1978] and muon telescopes [Mori, 1968b; Grigoryev et al., 2007]. Most muon
telescopes of the network of cosmic ray (CR) stations for which the receiving vectors were computed are
not operating now. In recent years, a number of new, modernized detectors have been developed.
Unfortunately, their usage is limited for lack of receiving coefficients for them. Among these detectors is
a matrix telescope in Novosibirsk. A multichannel observation CR complex (MOCRC) in Novosibirsk
[Yanchukovsky, 2010] functionally includes a neutron monitor 24NM-64, a spectrograph based on the
effect of local generation of neutrons [Yanchukovsky, Yanchukovsky, 1982; Yanchukovsky, Filimonov,
2000], and the matrix muon telescope [Yanchukovsky, 2006a]. The matrix structure provides an
individual CR station with a whole system of multi-directional muon telescopes. Being special-purpose,

muon telescopes are more suitable to observe CR anisotropy than neutron monitors. It is necessary to
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determine CR anisotropy and gradients with energy 1-250 GeV in order to devise methods for
diagnostics of interplanetary medium, using ground-based CR observations. The global survey method
worked out by IKFIA SB RAS [Krymsky et al., 1966] enables us to identify CR anisotropy at every
instant of time and to study fast anisotropy fluctuations related to interplanetary medium dynamics. It
combines three methods [Belov et al., 2004]:

e acoupling coefficient method [Dorman, 1957];

e amethod for trajectory calculations of particle motion in the geomagnetic field [Dorman et al., 1971];

e a method of spherical analysis allowing us to determine spherical harmonics for further analysis

[Kolmogorov, Fomin, 1989].

Harmonic coefficients are coefficients of receiving vectors for CR detectors and a vector

characterizing CR anisotropy in interplanetary space.

METHOD OF RECEIVING VECTORS

The CR intensity detected by a device in the atmosphere depends on its receiving characteristics
representing the geometry and geographical location of the device and a type of observable secondary
particles. To take into account effects of these parameters, IKFIA SB RAS developed a method of

receiving vectors [Kuzmin, 1968].

The distribution of CR over a sphere / (0, @) outside the magnetosphere can be presented as a series

expansion in a system of spherical functions being solutions of Laplace’s equation:

0

1(60,9)=>" i (a,',” cos(mo)+b," sin (mcp))Pn'”(sin ?), €))

n=0 m=0

where 0, ¢ are latitude and longitude angles in a coordinate system, P,"(sin @) are associated Legendre
functions. It is convenient to represent this distribution as a multidimensional vector 4 = {a b nm} with an
infinite number of components Oth < m < n < . Then for each point device we can identify a receiving
vector R such that the CR intensity 7, registered by the device, is equal to the scalar product:

I=AR. )

From these equations it follows that

R= {x;" o } , where x = cos(m¢)P"(sin¢)

v =sin(me)P/"(sing) . 3)

To find receiving vectors for real devices, we have to know directional diagrams of a detector N(6,
0), coupling coefficients W(E) between secondary and primary particles, energy spectrum f,(E) of CR
variations under study, and asymptotic angles of arrival W(E, 8, @), (£, 0, ¢). Cosmic ray distributions

expanding in spherical functions, the series converges rapidly. Therefore, along with the isotropic

component, the first two harmonics of distribution with experimentally observed effects are usually taken
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into consideration. Accordingly, in vectors 4 and R we account for the first nine components.
Receiving vectors are calculated below for the MOCRC of multi-directional narrow-angle muon
telescopes in Novosibirsk. CR muons are registered using detecting matrices implemented on the basis of
gas-discharged proportional counters CGM-14 [Yanchukovsky, 1994]. The particles are separated
according to direction of arrival through four-fold coincidence of signals in four rows of counters by two

over and under the neutron monitor (Figure 1).

The counters, combined into detector blocks of three each, are arranged mutually perpendicular and, being

included into coincidence circuits, form 45%45 cm detection areas (Figure 2).

Directions utilized to compute receiving vectors of muon telescopes based on the gas-discharged counters
are determined by coincidence circuits and orientation of a device. For the complex of muon telescopes of
Yakutsk spectrograph, the following directions have been selected: vertical and zenith angles of 30°, 60° from
north and south [Grigoryev et al., 2007]. The CR observation complex of muon telescopes in Novosibirsk with
the matrix method for detection based on four-fold coincidences being adopted enables us to detect particles in
vertical and at zenith angles of 26, 35, 44, 55, and 63°. Yet azimuth directions of registration for the zenith
angles depend on the orientation of a section of the neutron monitor, the telescope is placed on, and can be

northward (N), southward (S), westward (W), eastward (E), as well as NW, WS, SE, and EN.
DIRECTIONAL DIAGRAMS
Each device when recording CR is oriented to a celestial region defined by its directional diagram N(9,

¢)do with o being a solid angle [Kuzmin, 1964]. The directional diagram represents both geometric features

of the device and the zenith-azimuth angular dependence of intensity of detected particles [Kuzmin, 1968].

r
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Figure 1. Location of ion counters of the telescope in a section of the neutron monitor
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Figure 2. Schematic diagram of four-fold coincidences in recording particles from a vertical direction (@) and
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from a direction of 26° from the vertical (b)

The angular dependence of CR intensity is defined by the following equation
1(0)=Iycos’0, 4

where I, is the absolute intensity of vertically arriving particles that is 0.5 cm? min' sr™' [Murzin, 1970],
v is the exponent of angular distribution of particles (for Earth’s surface y = 1.3). Then the muon

telescope count rate Ny is found as
Ncoum 10C (5)

where C is called the telescope luminosity [Kuzmin, 1968] and is defined by
9 0
C:IIS (6, ¢)cos" Bsin Od pd 6 - (6)
00

Here S(0, @) is an area crossed by particles with coincidences being registered in a chosen direction,
depending on zenith 6 and azimuth ¢ angles of their arrival. The exponent y in (6) depends on the height
of observation relative to Earth’s surface. The side of a detector square cell L=45 cm, and the distance
between bottom and top layers of cells, set for coincidence, H=103 cm (Figure 2). The directional
diagram for one detector block is calculated for directions of registration at zenith angles of 0, 26, 44, 55,
and 63°. Expected count rates (without regard to the mass of the neutron monitor) are estimated for
different zenith angles of the muon telescope. The front location of the neutron monitor in a direction of

30° NW is taken as 0° azimuth angle.

DIRECTION FOR REGISTRATION OF PARTICLES AT A ZENITH ANGLE
OF 0° (VERTICAL)

The area S(0, @) crossed by particles with coincidences being registered from a vertical direction for one

detector block is found as
S(6, @)=(L—Htgbcosp)(L—Htgbsing), (7N

where, on condition of coincidences, each factor in brackets cannot be less than zero. When calculating a
directional diagram, the angle to start integration is determined by the type of the diagram — azimuth or
zenith. For luminosity of the telescope recording vertically arriving particles we have

/2 7/2
Coepr I JS(O @)cos™! Bsin 0cos 0d0d . (8)

(U]
Additional cosB accounts for a corner between the surface of the top layer of detector matrix and the
direction of incident particles. The telescope designed to record vertically arriving particles collects
particles from all azimuths; in this case Cy is multiplied by 4. Given /;, obtain the count rate of one block

Nye=10026 pulse/hr. Then the count rate of the telescope comprising 24 blocks (one section of the

facility) N2

vert

= 240624 pulse/hr.
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DIRECTION FOR REGISTRATION OF PARTICLES AT ZENITH ANGLES
OF 26, 44, 55, and 63°

For the said zenith angles, let us consider azimuth directions of 30° NW, 30° WS, 30° SE, 30°EN. The
area S(0, @), crossed by particles with coincidences being recorded, for oblique directions of the telescope

consists of two parts:
S0, 9)=51(8, 9)+5(6, ¢), €)
where S1(0, ¢)=(H tg 0 cos o—r)(L—H tg Osin ¢), 0<07; (10)
S$5(0, )=(r1—H tg Ocos @)(L—Htg 0 sin ¢), 6>07. (11)

Here 07 is a zenith angle of telescope axis (direction); », 7, are the shortest and longest distances in a
horizontal plane between sides of upper and lower cells set for coincidence. For 6;=26, 44, 55, and 63°,

we have =5, 55, 105, and 155 cm, =95, 145, 195, and 245 cm respectively.

According to the above calculation procedure for the count rate of the telescope detecting vertically

arriving particles, we obtained expected count rates for angled telescopes Ny (here n is the total number

of cell pairs, set for coincidence, for the angled telescope at a zenith angle 07):

N} (NW, SE)=130700 pulse/hr;
N1 (WS, EN)=117630 pulse/hr;
N;$ (NW, SE)=35060 pulse/hr;
N, (WS, EN)=26300 pulse/hr;
N{Z (NW, SE)=7800 pulse/hr;

N (WS, EN)=4000 pulse/hr;
N, (NW, SE)=1710 pulse/hr.

In brackets are azimuth directions of the telescopes. Figure 3 shows zenith and azimuth directional

diagrams for vertical and angled directions of the system of muon telescopes included into the MOCCR.

COUPLING COEFFICIENTS

Coupling coefficients W, according to the definition offered by Dorman [Dorman, 1957],
characterize relative sensitivity of a detector to protons of primary cosmic rays with different energies.
Coupling coefficients for channels of the matrix muon telescope included into the MOCRC were found
through theoretical calculations [Yanchukovsky, 1986] and experimentally [Yanchukovsky, 2006b;
Yanchukovsky, 2007] through the method of test detector [Dvornikov et al., 1989]. The coupling

coefficients normalized to 100% were determined as
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exp {—d [Ea+ b]fc}

c+1

W(E,0,)=a : (12)

[E o+ b]
where a is a normalization coefficient calculated as

% exp|—d(aE+b)*
a’l = [ ( M) ]dE.

min

Here and in (12), the b, ¢, d, and a parameters, normalization coefficient a, and threshold energy E;,
are functions of 07 (a zenith angle of telescope axis 7). The b, ¢, d, and o parameters were gauged by the
method for functional minimization [Yanchukovsky, 2007]. We calculated numerical values of the
coupling coefficients from Equation (12). Hereafter, the calculations involve a certain discrete set of
energies — from the threshold E;,(87) for each direction 07 of particle detection to energies of around
1000 GeV. The findings (after normalizing and taking into account the screen thickness in the directions)

are plotted in Figure 4.

COSMIC-RAY TRAJECTORIES

CR trajectories for the station Novosibirsk were computed for the same discrete set of energies that was
employed to calculate the coupling coefficients. Directional diagrams of the muon telescopes also being a
function of azimuth angle (Figure 3), asymptotic angles of arrival W(E, 6, @), D(E, 6, ¢) were calculated with a
resolution of 8° in zenith (from 0° to 64°) and 10° in azimuth (from 0° to 350°). Yet, we used coefficients of
expansion of the main geomagnetic field represented by 10 harmonics for the epoch of 2000s
[ftp://mssdcftp.gsfc.nasa.gov/models/geomagnetic/igrf/ fortran_code]. The CR trajectories were determined by
the method described in [Dorman et al., 1971]. In numerical integration, we applied the Eulerian method with

the initial step 4, selected empirically according to the solution accuracy.
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Figure 3. Zenith (a) and azimuth (b) directional diagrams of the complex of muon telescopes at zenith angles of

0, 26, 44, 55, and 63°
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Figure 4. Coupling coefficients W(E ,0; ) for the MOCRC of muon telescopes
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Figure 5. Receiving vector components of the first spherical harmonic for the CR muon telescope in
Novosibirsk for SW (a), NW (b), SE (c¢), and NE (d) azimuth directions for E;=70 GeV, local time
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From a distance of 37, (r, is the Earth radius), the contribution of harmonics above the second one to the
geomagnetic field is less than 1 %; the step /# was then chosen as h=hy(7/3r;). The trajectories were being
determined until one of the following conditions had been fulfilled: » < ro, n = 15000, r > 25r), where n is the
number of integration steps. Fulfillment of the first two conditions corresponded to forbidden trajectories. The
distance 25r, being reached, the integration was stopped and finite particle trajectories were used to find the

asymptotic latitude d(E, 6, ¢) and longitude Y(E, 0, ).

ENERGY SPECTRUM

The results available from determination of energy spectra of the first and second spherical
harmonics for CR distribution show a wide range of spectral variations. Their choice depends on
problems to solve in studying CR distribution with these harmonics. To find components of the first
harmonic, we selected a spectrum fi(E) as

SI(E)~E™ if E<E,,

SI(E)=0 if E>E,,.

Here vy takes values 0, 1, 2; and £, 30, 70, 150 GeV.

To gauge the second spherical harmonic, we employed a spectrum f,(£) from [Krivoshapkin et al.,
1989] where a screening mechanism for its generation is proposed. After approximation, it can be

represented as follows:

SAE) ~ (E/Ey) if E < Ey,
FAE) ~ (EIEo) * if E > Ey, (13)
where Ey=30, 70, 150 GeV.

RECEIVING VECTORS

Receiving vector components were calculated from the following equation [Chirkov et al., 1967]:

2
[W(E) 1, (E)N (0, 9)sin(0)e™ P (sin® (E, 0, ¢))dEdOd ¢
0

>

(14)
W(E)/f,(E)N(6,0)sin(¢)dEdBdo

. —38
O‘——.N\T—i

i

E

in

m __ _m . m
where Z" =X +iy).

The product MO “’)Rf‘(sin ) (E ,0, (p)) contains components
x! =sin®; x| = cos®cos ¥; y| =cosDsin ‘¥;

3. 1 . . .
xy ==sin’ ® ——; x) =sin2®cos \¥; y} = sin 2D sin ¥;
2 2
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x; =cos’ @ cos2¥; y: = cos’ Dsin 2.
The component x| characterizes sensitivity of this detector to the contribution the first harmonic

makes to the isotropic CR intensity component. The components x, and yl1 are respective radial and
azimuth first harmonic components in geographic (UT) or intrinsic (LT) coordinate system. The LT
components of receiving vectors are meant to analyze data for local time. For the global survey method,

2 2
we have to use the UT components of receiving vectors. The modulus |le| =, (xll) + ( yll) and the angle

0 = arctg( » / xll) describe the observable amplitude and phase variations in primary parameters of the
first harmonic as function of latitude and longitude of an observation point. The amplitude varies over
1/ |le|; and the phase, over Ql1 degrees (i.e. with a positive value, they are shifted to a later time). For
example, the receiving coefficients for the muon telescope at the CR station Novosibirsk (LT) in a

vertical direction for the first harmonic (diurnal variation) are x; =0.56 and y, =0.75. In this case, the
modulus of vector |le| =0.936, the angle, Q] =53.3°, i.e. the observed amplitude is reduced 1.07 times

with respect to the initial one; and the phase is shifted by 53.3° (to a later time).

The componentyxj characterizes the contribution the second spherical harmonic makes to the

isotropic CR intensity. The components x; and y; represent the antisymmetric diurnal variation resulting
from the contribution of the second harmonic to the first one. Its phases are opposite in the Northern and

Southern hemispheres. Accordingly, x; and y; are components of the second spherical harmonic of CR

distribution. The moduli |Z;| =\ [(x; )2 + (y; )2 , |Zzz| = /(xz2 )2 + (yf )2 and angles Q) = arctg(y; /x) ),

0: :arctg( v3 / xzz) characterize their variations relative to the initial distribution, depending on

coordinates of a CR station.

Figure 5, a—d illustrates receiving vector components for the first spherical harmonic of CR distribution
for azimuth directions of 34° SW, 34° NW, 34° SE, and 34° NE (LT) for £,=70 GeV and y=0, 1, 2. The results
of calculation of the receiving vector components we obtained for the first and second spherical harmonics of

CR distribution are listed in Tables 1-7 (Appendix A).

CONCLUSION

We have found receiving vector components for the muon telescope of the observation CR complex
in Novosibirsk. Design features of the facility, its orientation, directional diagrams depending on zenith
and azimuth angles, coupling coefficients for the complex of telescopes determined experimentally by the
method of test detector were taken into account. The receiving characteristics of the complex we
presented here are necessary to analyze modulation effects of CR intensity in a wide range of energies of

primary particles.
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APPENDIX A

Table 1. Receiving vector components of the first harmonic in a vertical direction

LT
Ey=30 GeV E=70 GeV E=150 GeV
v ! x) % n x) % » x) % n
0 025 | 055 | 075 | 050 | 049 | 062 | 055 | 047 | 058
0 I 0.6 | 055 | 078 | 030 | 052 | 071 | 033 | 051 | 069
2 006 | 053 | 081 | 012 | 052 | 078 | 013 | 052 | 078
UT
Ey=30 GeV E=70 GeV E=150 GeV
0° Y x) % n x) x » x) % n
0 025 | 068 | 064 | 050 | —056 | 056 | 055 | —052 | 054
0 I 0.6 | —071 | 064 | 030 | 064 | 060 | 033 | —063 | 059
2 006 | 074 | 063 | 012 | -071 | 062 | 013 | -071 | o6l

Table 2. Receiving vector components of the first harmonic in directions ¢=34° NE and 6=26, 44, 55, and 63°

LT
Ey=30 GeV Ey=70 GeV Ey=150 GeV
v ! X/ x n x) X n x) X n
26 0 022 | 050 | 080 | 049 | 038 | 069 | 055 | 035 | 0064
I 005 | 053 | 081 | 031 | 046 | 075 | 034 | 044 | 073
2 009 | 055 | 081 | o016 | 052 | 079 | 017 | 052 | 078
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44 0 0.64 0.44 0.51 0.82 0.32 0.30 0.84 0.31 0.31
1 0.54 0.48 0.57 0.70 0.39 0.40 0.71 0.38 0.40
2 0.43 0.53 0.62 0.54 0.48 0.52 0.55 0.47 0.52
55 0 0.75 0.25 0.55 0.92 0.07 0.26 0.92 0.05 0.29
1 0.70 0.29 0.57 0.87 0.12 0.32 0.88 0.11 0.33
2 0.64 0.33 0.60 0.79 0.19 0.41 0.80 0.18 0.41
0 0.78 0.15 0.57 0.95 —0.11 0.19 0.93 —0.13 0.28
63 1 0.77 0.16 0.58 0.94 —0.09 0.21 0.93 —0.11 0.27
2 0.75 0.18 0.60 0.92 —0.05 0.21 0.92 —0.07 0.27
uT
Ey=30 GeV Ey=70 GeV Ey=150 GeV
v ! x) % i x) % i %) % i
0 0.22 —0.74 0.59 0.49 —0.64 0.46 0.55 —0.59 0.43
26 1 0.15 —0.74 0.62 0.31 —0.69 0.54 0.34 —0.67 0.53
2 0.09 -0.73 0.65 0.16 -0.72 0.61 0.17 -0.71 0.61
0 0.64 —0.45 0.49 0.82 —0.11 0.34 0.84 —0.02 0.32
44 1 0.54 —0.50 0.55 0.70 —0.27 0.43 0.71 —0.22 0.41
2 0.43 -0.55 0.60 0.54 —0.43 0.53 0.55 —0.41 0.53
0 0.75 -0.51 0.32 0.92 —0.10 0.12 0.92 0.02 0.11
55 1 0.70 —0.53 0.35 0.87 -0.21 0.17 0.88 —0.14 0.16
2 0.64 —0.56 0.40 0.79 —0.33 0.25 0.80 -0.29 0.24
0 0.78 —-0.55 0.21 0.95 0.03 0.14 0.93 0.18 0.17
63 1 0.77 —0.56 0.23 0.94 —0.04 0.13 0.93 0.09 0.16
2 0.75 -0.57 0.25 0.92 —0.13 0.13 0.92 —0.03 0.15

Table 3. Receiving vector components of the first harmonic in directions ¢=34° NW and 6=26, 44, 55, and 63°

LT
Ey=30 GeV Ey=70 GeV Ey=150 GeV
L X % n x % » X X »
26 0 0.21 0.50 0.81 0.48 0.38 0.70 0.54 0.35 0.65
1 0.14 0.53 0.81 0.30 0.46 0.75 0.33 0.45 0.73
2 0.08 0.55 0.81 0.15 0.52 0.79 0.16 0.52 0.78
44 0 0.09 0.44 0.87 0.41 0.24 0.80 0.48 0.19 0.75
1 0.06 0.48 0.85 0.27 0.34 0.82 0.31 0.32 0.80
2 0.04 0.52 0.83 0.14 0.45 0.82 0.16 0.44 0.82
55 0 -0.07 | 0.37 0.91 0.26 0.13 0.91 0.36 0.07 0.87
1 —0.08 | 0.39 0.90 0.17 0.20 0.91 0.23 0.16 0.89
2 -0.09 | 042 0.88 0.09 0.28 0.90 0.12 0.26 0.90
63 0 -0.20 | 0.32 0.92 0.22 -0.01 | 0.95 0.35 -0.09 0.90
1 -0.20 | 0.33 0.91 0.17 0.03 0.95 0.27 —0.04 0.91
2 -0.20 | 0.35 0.91 0.10 0.09 0.95 0.18 0.03 0.93
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UT
Ey=30 GeV Ey=70 GeV Ey=150 GeV
L X x " X X » X X »
26 0 0.21 —0.74 0.59 0.48 —0.64 0.46 0.54 —0.60 0.43
1 0.14 —0.74 0.62 0.30 —0.68 0.55 0.33 —0.68 0.53
2 0.08 —0.74 0.64 0.15 -0.72 0.61 0.16 -0.72 0.61
44 0 0.09 —0.81 0.54 0.41 —0.76 0.34 0.48 -0.72 0.28
1 0.06 —0.78 0.58 0.27 —0.77 0.44 0.31 —0.76 0.41
2 0.04 —0.76 0.62 0.14 —0.76 0.54 0.16 —0.76 0.53
55 0 -0.07 | -0.86 0.48 0.26 —0.88 0.24 0.36 —0.85 0.18
1 —0.08 | —0.85 0.50 0.17 —0.88 0.31 0.23 —0.86 0.27
2 -0.09 | —0.83 0.53 0.09 —0.86 0.39 0.12 —0.86 0.37
63 0 -0.20 | -0.87 0.43 0.22 —0.94 0.11 0.35 -0.90 0.02
1 -0.20 | -0.87 0.44 0.17 —0.94 0.15 0.27 -0.91 0.07
2 -0.20 | -0.86 0.46 0.10 -0.93 0.20 0.18 -0.92 0.14

Table 4. Receiving vector components of the first harmonic in directions ¢=34° SE and 0=26, 44, 55, and 63°

LT
Ey=30 GeV Ey=70 GeV Ey=150 GeV
L X X N X X N X X, "
26 0 0.19 0.77 0.58 0.27 0.80 0.49 0.29 0.80 0.47
1 0.15 0.74 0.62 0.20 0.76 0.57 0.21 0.77 0.55
2 0.10 0.69 0.68 0.13 0.71 0.65 0.13 0.71 0.64
44 0 0.42 0.84 0.26 0.38 0.89 0.15 0.36 0.90 0.14
1 0.40 0.82 0.33 0.38 0.86 0.23 0.38 0.86 0.22
2 0.37 0.79 0.40 0.37 0.82 0.34 0.36 0.82 0.33
55 0 0.54 0.82 0.13 0.37 0.88 0.23 0.33 0.89 0.25
1 0.54 0.82 0.15 0.42 0.87 0.21 0.39 0.87 0.22
2 0.54 0.81 0.17 0.46 0.85 0.20 0.44 0.85 0.21
63 0 0.55 0.80 0.21 0.25 0.88 0.38 0.17 0.89 0.39
1 0.55 0.80 0.20 0.28 0.87 0.36 0.22 0.88 0.38
2 0.56 0.80 0.19 0.33 0.86 0.34 0.28 0.87 0.35
UT
Ey=30 GeV Ey=70 GeV Ey=150 GeV
o X X n X X » X X »
26 0 0.19 —0.48 0.84 0.27 -0.39 0.85 0.29 —0.37 0.86
1 0.15 —0.53 0.81 0.20 -0.47 0.83 0.21 —0.46 0.83
2 0.10 -0.59 0.77 0.13 -0.56 0.78 0.13 —-0.55 0.78
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44 0 0.42 -0.15 0.86 0.38 0.03 0.89 0.36 0.06 0.90
0.40 -0.22 0.85 0.38 —0.08 0.88 0.38 —0.06 0.88

[

2 0.37 —0.30 0.84 0.37 —0.21 0.85 0.36 -0.21 0.85
55 0 0.54 0.13 0.81 0.37 0.31 0.85 0.33 0.34 0.86
1 0.54 0.09 0.81 0.42 0.26 0.84 0.39 0.28 0.85
2 0.54 0.04 0.81 0.46 0.18 0.83 0.44 0.19 0.83
63 0 0.55 0.29 0.77 0.25 0.48 0.83 0.17 0.50 0.84

1 0.55 0.28 0.77 0.28 0.46 0.82 0.22 0.48 0.83
2 0.56 0.26 0.77 0.33 0.44 0.81 0.28 0.45 0.82

Table 5. Receiving vector components of the first harmonic in directions ¢=34° SW and 6=26, 44, 55, and 63°

LT
E¢=30 GeV Eo=70 GeV E=150 GeV
0° ¥ X x » X x » X, X »
26 0 0.06 | 055 | 081 | 028 | 049 | 077 | 034 | 047 | 075
| 003 | 056 | 082 | 015 | 052 | 080 | 018 | 051 | 0.79
2 0.00 | 055 | 082 | 005 | 054 | 081 | 006 | 054 | 081
44 0 | 007 | 067 | 074 | 004 | 064 | 075 | 008 | 063 | 0.75
1| 006 | 067 | 073 | 000 | 065 | 075 | 002 | 065 | 075
2 | 004 | 067 | 074 | —0.02 | 066 | 074 | —0.02 | 066 | 0.74
55 0 | 018 | 071 | 068 | 013 | 067 | 072 | 009 | 0.66 | 0.73
1| =017 | 071 | 067 | —0.14 | 068 | 071 | —0.12 | 067 | 072
2 | 015 | 072 | 067 | -0.15 | 069 | 070 | —0.14 | 0.69 | 0.70
63 0 | 028 | 069 | 066 | 026 ] 062 | 074 | 021 | 061 | 076
1| 028 | 070 | 066 | 027 | 062 | 073 | 023 | 062 | 0.74
2 | 027 | 070 | 065 | 027 | 063 | 072 | 025 | 063 | 073
UT
Ey=30 GeV Ey=70 GeV Ey=150 GeV
C X x| ” X x ” X X ”
26 0 0.06 | 074 | 065 | 028 | 071 | 058 | 034 | 069 | 056
1 003 | —0.74 | 065 | 015 | —0.73 | 061 | 018 | —0.72 | 0.1
2 0.00 | —0.75 | 0.65 | 005 | —0.74 | 0.63 | 006 | -0.74 | 0.63
44 0 | 007 | 065 075 | 004 | 067 | 073 | 008 | 067 | 072
1| 006 | 065 | 075 | 000 | —0.66 | 074 | 002 | 066 | 0.73
2 | 004 | 065 | 075 | 002 | 066 | 074 | 002 | 066 | 0.74
55 0 | 018 | 059 | 078 | 013 | 064 | 075 | 009 | 065 | 0.75
1| 017 | 058 | 079 | —0.14 | 062 | 076 | —0.12 | 063 | 0.76
2 | 015 | 058 | 0.80 | —0.15 | 061 | 077 | —0.14 | —0.61 | 0.77
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63 -0.28 | —0.57 0.77 -0.26 | —0.66 0.70 -0.21 | —0.68 0.70
—0.28 | —0.57 0.77 -0.27 | -0.65 0.71 -0.23 | -0.66 0.70
-0.27 | -0.56 0.78 -0.27 | -0.63 0.72 -0.25 | -0.65 0.71
Table 6. Receiving vector components (UT) of the second harmonics
v Eo, Gev x x, ” x v
Vertical
30 —0.02 —-0.51 0.53 0.02 —0.67
0 70 0.29 —0.53 0.64 —0.04 —0.45
150 0.41 —0.46 0.65 —0.06 —0.36
Direction ¢=34° SW
30 —0.27 —0.16 0.64 —0.67 —0.42
26 70 —0.23 —0.11 0.71 —0.73 —0.26
150 -0.22 —0.08 0.73 -0.74 -0.19
30 0.08 0.16 0.88 —0.45 0.17
44 70 —0.02 0.32 0.80 -0.41 0.44
150 -0.09 0.34 0.74 -0.39 0.53
30 0.24 0.44 0.78 -0.16 0.40
55 70 0.02 0.56 0.66 —0.04 0.61
150 —0.10 0.53 0.57 0.01 0.71
30 0.05 0.63 0.55 0.14 0.59
63 70 —0.15 0.62 0.45 0.24 0.71
150 -0.28 0.50 0.35 0.29 0.79
Direction ¢=34° NW
30 -0.07 —0.56 0.37 0.22 —0.65
26 70 0.29 —0.66 0.42 0.16 —0.42
150 0.44 -0.59 0.41 0.12 —0.32
30 -0.20 —0.52 0.16 0.46 -0.59
44 70 0.14 —0.76 0.16 0.42 —0.32
150 0.33 —0.74 0.10 0.31 —0.21
30 —0.34 —0.32 0.02 0.67 —0.51
55 70 —0.13 —0.69 0.03 0.67 —0.23
150 0.02 -0.77 —0.05 0.55 -0.10
30 -0.32 —0.38 —-0.05 0.78 -0.21
63 70 -0.21 —0.66 -0.07 0.77 0.00
150 —-0.01 -0.79 -0.19 0.60 0.15
Direction ¢= 34° SE
30 —0.37 -0.19 0.47 —0.58 —0.66
26 70 —0.30 —0.20 0.58 —0.64 —0.55
150 —0.26 —0.19 0.63 —0.65 —0.50
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30 —0.25 0.01 0.70 —0.76 0.04
44 70 —0.31 0.08 0.62 —0.80 0.22
150 —0.33 0.09 0.58 —0.80 0.28
30 —0.22 0.21 0.68 —0.61 0.48
55 70 -0.35 0.20 0.50 —-0.61 0.63
150 -0.39 0.17 0.40 —-0.61 0.68
30 -0.36 0.22 0.40 —0.45 0.77
63 70 —0.44 0.15 0.24 —0.45 0.84
150 —0.47 0.07 0.10 —0.45 0.85
Direction ¢=34° NE
30 —0.05 —0.57 0.37 0.21 —0.64
26 70 0.31 —0.65 0.42 0.16 —0.40
150 0.46 —0.58 0.41 0.11 —0.31
30 0.59 -0.19 0.52 —0.02 -0.19
44 70 0.71 0.24 0.45 0.02 0.01
150 0.64 0.43 0.42 0.08 0.08
30 0.74 -0.27 0.23 0.09 -0.12
55 70 0.83 0.22 0.14 0.09 —-0.01
150 0.72 0.16 0.13 0.17 0.02
30 0.78 0.04 0.25 0.09 0.03
63 70 0.77 0.41 0.32 0.08 0.09
150 0.59 0.65 0.32 0.20 0.16
Table 7. Receiving vector components (LT) of the second harmonics
v Fo 5B x X, ” X v
Vertical
30 —0.02 0.46 0.57 —0.18 0.65
0 70 0.29 0.57 0.61 —0.07 0.45
150 0.41 0.59 0.54 —0.03 0.36
Direction ¢=34° SW

30 —0.27 0.62 0.24 0.55 0.57
26 70 —0.23 0.69 0.20 0.65 0.43
150 -0.22 0.72 0.17 0.68 0.38
30 0.08 0.89 0.22 0.48 0.30
44 70 —0.02 0.84 0.28 0.50 0.40
150 -0.09 0.78 0.29 0.50 0.47
30 0.24 0.83 0.40 0.25 0.40
55 70 0.02 0.73 0.49 0.19 0.60
150 —0.10 0.63 0.47 0.16 0.69
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30 0.05 0.62 0.56 0.01 0.61
63 70 —0.15 0.53 0.56 —0.06 0.75
150 —0.28 0.41 0.45 -0.09 0.84
Direction ¢=34° NW
30 —-0.07 0.30 0.60 -0.37 0.58
26 70 0.29 0.34 0.70 -0.26 0.36
150 0.44 0.33 0.63 -0.19 0.28
30 —-0.20 0.10 0.53 -0.59 0.46
44 70 0.14 0.07 0.77 —0.48 0.21
150 0.33 0.01 0.74 -0.38 0.13
30 —0.34 —0.02 0.32 -0.77 0.33
55 70 -0.13 —-0.05 0.68 -0.70 0.06
150 0.02 -0.14 0.76 —0.56 —0.04
30 -0.32 —0.10 0.37 —0.81 0.02
63 70 -0.21 -0.15 0.64 -0.74 -0.19
150 -0.01 -0.29 0.76 -0.54 -0.29
Direction ¢=34° SE
30 -0.37 0.44 0.25 0.41 0.78
26 70 -0.30 0.56 0.27 0.48 0.69
150 -0.26 0.61 0.27 0.51 0.64
30 —0.25 0.69 0.11 0.75 0.24
44 70 -0.31 0.63 0.08 0.83 0.19
150 -0.33 0.58 0.07 0.84 0.20
30 -0.22 0.70 0.15 0.71 0.36
55 70 —0.35 0.52 0.15 0.74 0.48
150 -0.39 0.42 0.12 0.75 0.52
30 -0.36 0.42 0.17 0.63 0.64
63 70 —0.44 0.26 0.12 0.64 0.71
150 —0.47 0.11 0.06 0.65 0.72
Direction ¢=34° NE
30 —0.05 0.30 0.61 -0.36 0.57
26 70 0.31 0.34 0.70 —0.25 0.35
150 0.46 0.33 0.62 -0.19 0.27
30 0.59 0.50 0.44 —-0.02 0.24
44 70 0.71 0.47 0.45 -0.02 0.17
150 0.64 0.46 0.55 —0.06 0.20
30 0.74 0.15 0.53 -0.12 0.10
55 70 0.83 0.05 0.49 -0.09 0.03
150 0.72 0.04 0.63 -0.17 0.03
30 0.78 —0.18 0.48 —0.10 —0.03
63 70 0.77 —-0.26 0.53 -0.11 —-0.08
150 0.59 -0.23 0.72 -0.23 -0.11
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