УДК 004.725.7

Ф.Ю.Лозбинев, А.П.Кобышев

МЕТОДИКА ОЦЕНКИ ГОТОВНОСТИ ТЕЛЕКОММУНИКАЦИОННЫХ СЕТЕЙ ОРГАНОВ ВЛАСТИ НА ПРИМЕРЕ ТЕРРИТОРИИ БРЯНСКОЙ ОБЛАСТИ

Показаны подходы к оценке показателей устойчивости и целостности сетей связи. Приведено описание алгоритма расчета коэффициентов готовности объектов сети. Выполнен анализ коэффициентов готовности магистрали корпоративной телекоммуникационной сети на территории Брянской области. Сформулированы перспективные задачи.

Ключевые слова: телекоммуникационная сеть, радиоэлектронные средства, волоконно-оптическая линия связи, показатели надежности сети, коэффициент готовности оборудования.

Организационно-техническое обеспечение устойчивого функционирования сети связи представляет собой совокупность требований и мероприятий, направленных на поддержание ее целостности и устойчивости [1; 6]. При этом под целостностью сети связи понимается способность взаимодействия входящих в ее состав элементов, при котором становится возможным установление соединения и передача информации между пользователями, под устойчивостью — способность сохранять требуемые функции (целостность) в условиях эксплуатации, установленных производителями средств связи, при отказе части элементов и возвращаться в исходное состояние (надежность сети связи), а также в условиях внешних дестабилизирующих воздействий природного и техногенного характера (живучесть сети связи).

Показатели устойчивости сети связи «надежность» и «живучесть» прогнозируют на основе вероятностного характера дестабилизирующих воздействий, которые могут быть как внутренними, так и внешними [7; 8].

Разделение дестабилизирующих воздействий на внутренние и внешние дает возможность представить показатель «устойчивость связи» как совокупность свойств надежности и живучести. При этом надежность будет определяться свойством сети сохранять работоспособность при воздействии внутренних дестабилизирующих факторов, а живучесть — свойством сети сохранять работоспособность при воздействии внешних дестабилизирующих факторов (как непреднамеренных, так и преднамеренных), задаваемых в виде модели воздействия [3].

Объектом исследования в данной работе является Южная магистраль мультисервисной корпоративной сети связи (МКСС) органов власти на территории Брянской области. Предмет исследования — коэффициент готовности оборудования в телекоммуникационных сетях наземного беспроводного радиодоступа и комбинированных с волоконнооптическими линиями связи (ВОЛС).

Системный проект указанной сети [2] был разработан в 2008 г. московской компанией «Интеллект Телеком». В проекте были представлены прогнозные значения показателей надежности и показателей функционирования сети, подтверждающие выполнение требований по организационно-техническому обеспечению устойчивого функционирования.

Телекоммуникационная сеть, созданная на территории Брянской области с использованием беспроводных технологий, радиоэлектронных средств (РЭС) и ВОЛС, может рассматриваться как целостная применительно к установлению соединения и предоставлению пользователям услуг передачи данных, а также услуг мультимедиа.

Отсюда целостность сети в отношении ее способности предоставления той или иной услуги определяется возможностью в любой момент времени предоставить сквозной канал связи (виртуальный или физический) от вызывающего абонента к вызываемому, который будет соответствовать по своим характеристикам запрашиваемой услуге [2].

Основными требованиями по обеспечению целостности сети связи являются её соответствие техническим нормам по показателям функционирования, функциональная и физическая совместимость средств связи, единство измерений в сети связи [1].

Основными требованиями по обеспечению устойчивости сети связи являются следующие [1]:

- выполнение требований к построению сетей при их проектировании;
- выполнение мероприятий гражданской обороны;
- разработка мер по обеспечению показателей надежности;
- соблюдение условий эксплуатации, установленных правилами применения соответствующих средств связи и документацией производителя;
- выполнение требований к эксплуатации в части технического обслуживания средств и линий связи;
- выполнение требований к управлению сетями связи в части контроля показателей нагрузки и анализа технических неисправностей для определения показателей надежности в процессе эксплуатации (эксплуатационные показатели надежности).

Из перечисленного следует, что к основным системам обеспечения функционирования сети связи для поддержания ее целостности и устойчивости относятся система управления и система восстановления.

Система управления предназначается для обеспечения работы сети связи с заданным качеством обслуживания пропускаемого трафика путем оптимального использования имеющихся ресурсов, а система восстановления — для оперативного создания работоспособных в экстремальных условиях эквивалентов, временно заменяющих неработающие стационарные средства связи, и последующего их восстановления.

Для проведения обобщенной оценки надежности оборудования связи в комплексе и оценки надежности направлений (соединений) сети связи применяется коэффициент готовности K_z , определяемый показателями T_o и T_a [3]:

$$K_{\varepsilon} = T_o / (T_o + T_{\theta}), \tag{1}$$

где T_o — время наработки на отказ объекта связи (наработка от начала эксплуатации до возникновения отказа); T_e — время восстановления объекта связи (продолжительность восстановления до работоспособного состояния).

Коэффициент готовности определяет вероятность того, что объект связи окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых его применение по назначению не предусматривается. Такое определение коэффициента готовности позволяет применить этот показатель для оценки как отдельных элементов оборудования связи, так и комплекса оборудования линий связи [3].

Для расчета коэффициента готовности объектов магистрали сети разработан следующий алгоритм:

1. Составляется топологическая схема рассматриваемой магистрали сети (в данном случае – Южной магистрали). Осуществляется нумерация всех объектов топологической схемы (рис. 1), реализованной на средствах радиодоступа: радиомаршрутизаторов и сетевых коммутаторов.

В рассматриваемой схеме присутствуют 40 объектов: 26 радиомаршрутизаторов – 16 магистральных (номера $1 \dots 16$) и 10 последней мили (17 ... 26), а также 14 коммутаторов – 8 на базовых станциях (b ... q) и 6 в оконечных точках магистрали (a, r ... y).

2. Для каждого радиомаршрутизатора (объекта магистрали) задаётся величина $T_{\it в}$ – среднее время восстановления объекта после сбоя в зависимости от расстояния от места расположения оператора связи в г. Брянске до объекта. Принимается, что резервные каналы связи отсутствуют и для восстановления объекта необходимо добраться до него непо-

средственно. Приближенные данные по результатам технического обслуживания исследуемой МКСС в 2010-2014 гг. представлены в табл. 1.

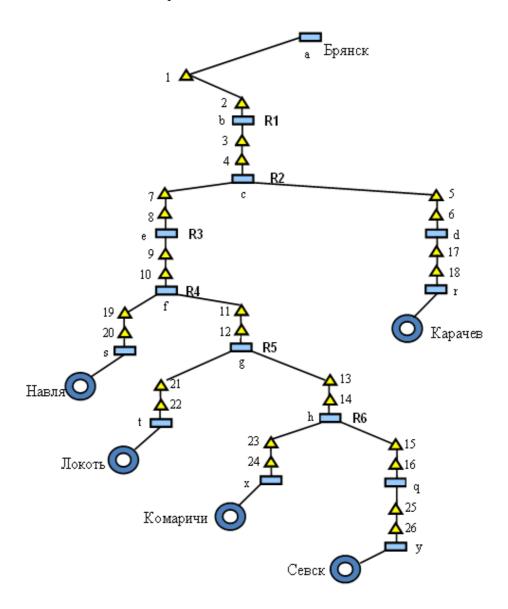


Рис. 1. Топология Южной магистрали корпоративной сети органов власти на территории Брянской области (R1 ... R6 — узлы ретрансляции)

- 3. Для каждого радиомаршрутизатора задаётся величина l протяжённость участка трассы (линка) до объекта (в км).
- 4. Для каждого радиомаршрутизатора задаётся величина L расстояние от места расположения оператора связи в г. Брянске до объекта (в км).
- 5. Для каждого радиомаршрутизатора (как объекта сети доступа) вычисляется значение среднего времени между отказами объекта T_o (в часах) [3]:

$$T_o = T_{o \partial 200}$$
, (200 / 1),

где $T_{o \partial 200}$ — показатель надёжности системы тактовой сетевой синхронизации [3] местной первичной сети (сети доступа); l — протяжённость участка трассы (линка) до объекта.

Таблица 1

Среднее время восстановления объекта

Среднее время восстановления ооъекта				
Pасстояние L	Среднее время			
от оператора связи	восстановления			
до объекта, км	объекта T_e , ч			
До 10	2			
11 30	3			
3160	4			
61 90	5			
91 120	6			
121 150	7			
151 180	8			
181 210	9			
211230	10			
231 260	12			

- 6. Для каждого радиомаршрутизатора (объекта магистрали) по формуле (1) вычисляется значение коэффициента готовности K_2 .
- 7. Для каждого оконечного пункта магистрали (Карачев, Навля, Локоть, Комаричи, Севск) по схеме на рис. 1 определяется величина n_{κ} количество коммутаторов до оконечной точки.
- 8. Для каждого оконечного пункта магистрали по схеме на рис. 1 определяется величина n_{psc} количество радиомаршрутизаторов до каждой оконечной точки.
- 9. Для каждого оконечного пункта магистрали рассчитывается коэффициент готовности K_{eom} :

$$K_{com} = K_{c\kappa}^{n_{\kappa}} \prod_{i=1}^{n_{p9c}} K_{ci},$$

где $K_{z\kappa}$ — коэффициент готовности системы коммутации (принимается равным 0,99999 [2]); n_{κ} — количество коммутаторов до оконечной точки; n_{psc} — количество радиомаршрутизаторов до оконечной точки; K_{zi} — коэффициент готовности i-го РЭС.

10. Для каждого варианта построения сети вычисляется величина условного коэффициента готовности K_{ey} для магистрали:

$$K_{zy} = \frac{1}{m} \sum_{j=1}^{m} K_{zj},$$
 (2)

где m — количество абонентов (оконечных точек); K_{zj} — коэффициент готовности j-го абонента (оконечной точки).

11. Рассматривается вариант построения участка сети от центрального узла до оконечной точки с использованием ВОЛС (рис. 2).

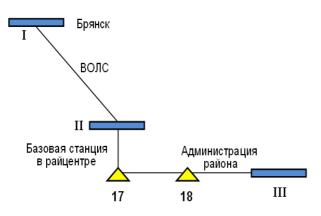


Рис. 2. Фрагмент топологии сети до оконечной точки с использованием ВОЛС

В таком варианте для каждой оконечной точки (n_{κ} = 3) принимаются следующие исходные данные:

- коэффициент готовности системы коммутации $K_{2\kappa}$ = 0,99999 [2];
- коэффициент готовности транспортной сети K_{emc} = 0,99995 [2].
- 12. Для каждого оконечного пункта магистрали определяются номера радиомаршрутизаторов последней мили и их коэффициенты готовности.
- 13. Для каждого оконечного пункта магистрали вычисляются коэффициенты готовности K_{2om} :

$$K_{com} = K_{c\kappa}^{3} K_{cmc} \prod_{i=1}^{2} K_{ci},$$

где $K_{2\kappa}$ — коэффициент готовности системы коммутации; K_{2mc} — коэффициент готовности транспортной сети; K_{2i} — коэффициент готовности i-го РЭС последней мили.

14. По формуле (2) вычисляется величина условного коэффициента готовности магистрали при использовании ВОЛС.

С использованием разработанного алгоритма выполнена расчетная оценка Южной магистрали при различных вариантах оборудования и топологической схемы [4;5]. В процессе выполнения расчетов приняты следующие допущения:

- 1. Среднее время между отказами T_o для РЭС типа R2-AP1-F5060 принято в соответствии с [3] (400 ч), для РЭС типа DreamStation 5n-24D по результатам опытной эксплуатации в 2011-2014 гг. (800 ч).
 - 2. Расстояние последней мили для всех районов принято равным 2 км.
- 3. Коэффициенты готовности системы коммутации $K_{2\kappa}$ приняты одинаковыми для всех коммутаторов: 0,99999 [2].
- 4. Коэффициенты готовности участков транспортной сети на основе ВОЛС $K_{\varepsilon mc}$ приняты одинаковыми для всех участков: 0,99995 [2].

Результаты расчетов представлены в табл. 2.

Таблица 2 Результаты расчета коэффициентов готовности оконечных точек Южной магистрали

Оконечная	ж Коэффициенты готовности оконечных точек K_{ε}			
точка	R2-AP1-F5060	DreamStation 5n-24D*	DreamStation 5n-24D**	ВОЛС*
Карачев	0,99436	0,99652	0,99717	0,99972
Навля	0,99104	0,99472	0,99552	0,99968
Локоть	0,98700	0,99242	0,99351	0,99962
Комаричи	0,98400	0,99116	0,99200	0,99956
Севск	0,97882	0,98799	0,98938	0,99952
Магистраль	0,98704	0,99256	0,99352	0,99962

Примечания: 1) * — на последней миле используются только РЭС R2-AP1-F5060;

Анализ полученных результатов позволяет сформулировать следующие выводы:

- 1. Разработанный алгоритм на основе логико-вероятностного подхода позволяет выполнять оценку коэффициентов готовности как отдельного телекоммуникационного оборудования, так и в комплексе для магистральных линий связи корпоративной сети органов власти Брянской области.
- 2. Процесс расчета коэффициента готовности для всех объектов сети является существенно трудоёмким, поэтому для дальнейшей работы его необходимо автоматизировать.
- 3. Сочетание ВОЛС на магистральных точках и РЭС (R2-AP1-F5060 и DreamStation 5n-24D) на последней миле позволяет обеспечить нормативные значения коэффициента готовности, в том числе для сетей следующего поколения [3].

В процессе дальнейших исследований рассматриваемой МКСС представляется целесообразным решить следующие задачи:

- при расчёте среднего времени между отказами объекта T_o получить реальные статистические данные по отказам;
- оценить влияние на коэффициент готовности оконечных точек $K_{\varepsilon \ om}$ уменьшения среднего времени восстановления объектов T_{θ} на магистрали и в оконечных точках с целью определения вариантов резервирования каналов связи и организации технического обслуживания сети;
 - определить минимально допустимые значения среднего времени между отказами

^{2) ** —} на последней миле используются только РЭС DreamStation 5n-24D.

каждого объекта T_o для обеспечения нормативных значений коэффициента готовности в оконечных точках K_{com} ;

- оценить влияние на показатели целостности и устойчивости сети дестабилизирующих факторов;
- определить максимально допустимую монтированную ёмкость сети в районных центрах и точках ретрансляции;
- разработать обобщённую математическую модель для оценки показателей целостности и устойчивости сети;
- разработать предложения по совершенствованию объекта исследований и выполнить экономическую оценку предложенных мероприятий.

СПИСОК ЛИТЕРАТУРЫ

- 1. Требования к организационно-техническому обеспечению устойчивого функционирования сети связи общего пользования: утв. приказом Мининформсвязи РФ № 113 от 27.09.07 г.
- 2. Системный проект на создание мультисервисной корпоративной сети на территории Брянской области. М.: Интеллект Телеком, 2008. 117 с.
- 3. Назаров, А.Н. Модели и методы расчета показателей качества функционирования узлового оборудования и структурно-сетевых параметров сетей связи следующего поколения / А.Н.Назаров, К.И.Сычев. Красноярск: Поликом, 2010. 389 с.
- 4. Лозбинев, Ф.Ю. Развитие телекоммуникационной основы формирования электронного правительства в Брянской области / Ф.Ю. Лозбинев //Вестник Брянского государственного технического университета. − 2012. №3. С.90-93.
- 5. Лозбинев, Ф.Ю. Развитие топологии телекоммуникационной сети органов власти в Брянской области / Ф.Ю. Лозбинев // Инновации в профессиональном образовании и научных исследованиях вуза: сб. тр. Междунар. науч.-практ. конф. Брянск: БГТУ, 2014. С.9-13.
- 6. Боровский, А.С. Обоснование требований (показателей качества) к оценке защищенности потенциально опасных объектов / А.С. Боровский // Вестник компьютерных и информационных технологий. − 2013. № 7. − С. 52-56.
- 7. Лукьянов, В.С. Оценка показателей надежности сетей / В.С. Лукьянов, С.В. Гаевой, Ф.А.Х. Аль-Хаджа // Вестник компьютерных и информационных технологий. 2013. № 8. С. 47-52.
- 8. Стародубцев, Ю.И. Метод оценки защищенности информационно-телекоммуникационной сети от деструктивных программных воздействий / Ю.И. Стародубцев, В.В. Бухарин, А.В. Кирьянов, О.А. Баленко // Вестник компьютерных и информационных технологий. 2013. № 4. С. 37-42.

Материал поступил в редколлегию 30.03.15.