
Наукоемкие технологии при сборке машин

УДК 621.98:539.376

DOI: 10.30987/ article_5c7434f72d98d2.34602439

В.Н. Чудин, д.т.н., (ФГБОУ ВО «Российский университет транспорта (МИИТ)», 127994, г. Москва, ул. Образцова, д. 9, стр. 9) E-mail: vladimir-chudin@yandex.ru

Соединение корпусных обечаек при кратковременной ползучести

Предложены технологическая схема и соотношения для расчета технологии соединения давлением обечаек. Использован метод баланса работ. Приняты уравнения состояний материала в условиях пластичности и кратковременной ползучести. Даны результаты расчетных и технологических работ.

Ключевые слова: пластичность; ползучесть; работа внешних и внутренних сил; прессовое давление; время выдержки и релаксации.

V.N. Chudin, Dr. Sc. Tech.

(FSBEI HE "Russian University of Transport (MITE), Build.9, 9, Obraztsov Str, Moscow, 127994)

Case shell joint at short-term creep

A technological system and proportions for the technology computation of shell pressure joint are offered. A method of work balance is used. The equations of material state under conditions of the plasticity and short-term creep are adopted. The results of computation and technological works are given.

Keywords: plasticity; creep; work of internal external forces; press pressure; time of delay and relaxation.

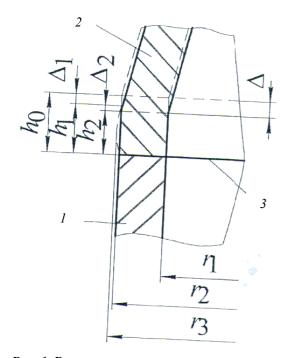
Ряд корпусных узлов летательных аппаратов (обтекатели, топливные емкости, клапаны и др.) изготавливают из обечаек и входящих элементов, которые соединяют неразъемно сваркой плавлением. Сварка плавлением понижает прочность конструкций и не всегда обеспечивает требуемую герметичность соединения. В этой связи перспективны процессы соединения давлением [1]. Процессы реализуют на гидропрессовом оборудовании с нагревом зоны соединения до 0,4...0,6 температуры плавления материалов.

Соединение происходит на диффузионном уровне без плавления зерен материалов, т.е. в твердой фазе. Режимы технологии зависят от температурно-скоростных условий процесса. Этот фактор связан с проявлением вязких свойств (ползучести) нагретого материала, находящегося под внешним давлением [2]. Технология сварки давлением состоит из сборки

входящих деталей, осадки, выдержки во времени под давлением, разгрузки. Расчетнотехнологическая схема соединения по торцам двух оболочек показана на рис. 1.

Рассмотрим процесс поэтапно.

Локальная осадка. Осадка сборки в зоне сварки производится давлением гидропресса на величину рабочего хода Δ_1 . Рассчитаем деформационные и силовые параметры осадки. Используем метод работ в соответствии с энергетическим уравнением равновесия [3]:


$$A_1 = A_2 = q\Delta_1 \int dS = \int \sigma_i \varepsilon_i dW. \tag{1}$$

Здесь A_1 , A_2 – работа внешних и внутренних сил соответственно; q – давление осадки; σ_i , ε_i – интенсивности напряжений и деформаций; Δ_1 – величина осадки; S – площадь приложения давления; W – объем зоны деформаций. Состояние деформируемого мате-

риала при кратковременной осадке является жестко-пластическим, что определяется уравнением

$$\sigma_i = k_1 \varepsilon_i^m, \tag{2}$$

где k_1 , m – константы упрочнения материала.

Рис. 1. Расчетно-технологическая схема соединения: 1, 2 – обечайки; 3 – поверхность сварки

Схему деформаций считаем плоской, т.е.

$$\varepsilon_r = -\varepsilon_h = \ln \frac{r}{\eta},$$

$$\varepsilon_i = \frac{2}{\sqrt{3}} \ln \frac{r}{\eta},$$
(3)

где ε_r , ε_i — радиальная деформация и деформация по высоте; $r < r_0 < r_1$ — текущий радиус точки в зоне осадки; r_1 , r_2 — внутренний и внешний радиусы заготовки.

В соответствии с уравнением (2) и выражением (3) имеем

$$\sigma_i = k_1 \left(\frac{2}{\sqrt{3}} \ln \frac{r}{r_1} \right)^m. \tag{4}$$

Работа внешних сил определяется как

$$A_1 = \pi q \Delta_1 (r_3^2 - r_1^2), \tag{5}$$

где $r_3 = [cr_2^2 - (c-1)r_1^2]^{1/2}$ — внешний радиус зоны деформаций после осадки; $c = h_0 / h_1$; h_0 , h_1 — высота зоны деформаций до и после осадки.

Работу внутренних сил представим в соответствии с уравнением (3) с учетом выражения (4) соотношением

$$A_{2} = 2\pi k_{1} \left(\frac{2}{\sqrt{3}r_{1}}\right)^{1+m} \int_{0}^{h_{1}} dh_{1} \int_{r_{1}}^{r_{3}} r^{2+m} \left(1 - (1+m)\frac{r_{1}}{r}\right) dr = 2\pi k_{1} K r_{1}^{2} h_{1} \left(\frac{2}{\sqrt{3}}\right)^{1+m}.$$
 (6)

Здесь

$$K = \left\{ \left[\left(\frac{r_3}{r_1} \right)^{3+m} - 1 \right] - \left[\left(\frac{r_3}{r_1} \right)^{2+m} - 1 \right] \right\}.$$

Давление осадки получим в соответствии с уравнением (1) при подстановке выражений (5), (6) в следующем виде:

$$q = 2\left(\frac{2}{\sqrt{3}}\right)^{1+m} k_1 K r_1^2 h_1 / \Delta_1 (r_2^2 - r_1^2).$$
 (7)

Выдержка под давлением. На следующем этапе технология предусматривает выдержку заготовок под давлением. Давление осадки может быть уменьшено при увеличении дли-

тельности выдержки. На данном этапе интенсивность напряжений постоянна и определяется выражением (4). Развиваются деформации ползучести. Состояние материала при этом определяется как кратковременная ползучесть при полученной пластической деформации осадки (3):

$$\xi_i = \frac{d\varepsilon_i}{dt} = \frac{d\varepsilon_{inn.}}{dt} + \xi_{inons.}$$
 (8)

Здесь ε_i , ξ_i — интенсивности накопленных конечных деформаций и их скоростей; $\varepsilon_{i \text{ пл.}}$ — интенсивность пластических деформаций (3); $\xi_{i \text{ полз.}}$ — интенсивность скоростей деформаций ползучести; t — время.

Так как на данном этапе

$$\sigma_i = \text{const}$$
; $\varepsilon_{inn.} = \text{const}$, to $\frac{d\varepsilon_{inn.}}{dt} = 0$,

то из уравнения (8) следует, что

$$\xi_i = \xi_{i \text{ полз.}} = \frac{d\varepsilon_{i \text{ полз.}}}{dt} = k_2 \sigma_i^n, \qquad (9)$$

где

$$\varepsilon_{i\text{moiss.}} = \frac{2}{\sqrt{3}} \ln \frac{h_1}{h_2} = \frac{2}{\sqrt{3}} \left(\frac{h_0 - \Delta_1}{h_2} - 1 \right) - (10)$$

- интенсивность деформаций ползучести; h_2 – конечная высота зоны деформации после выдержки; k_2 , n – константы ползучести материала.

Ползучесть материала происходит при ходе Δ_2 и накладывается на пластическую деформацию в зоне осадки. Длительность этапа ползучести определяется по уравнению (9) при подстановке выражения (10), т.е.

$$t_{\text{\tiny{IIOJI3.}}} = \frac{2}{\sqrt{3}k_2\sigma_i^n} \left(\frac{h_0 - \Delta_1}{h_2} - 1\right). \tag{11}$$

Релаксация напряжений. После окончания времени выдержки (11) давление на заготовки снимают. При этом, следовательно,

$$\varepsilon_i = \text{const}$$
; $\xi_i = \frac{d\varepsilon_i}{dt} = 0$

и уравнение (8) получает вид

$$\frac{d\varepsilon_{i\pi\pi}}{dt} + \xi_{i\pi\pi\pi} = 0. \tag{12}$$

Происходит релаксация напряжений.

В уравнение (12) внесем производную по времени уравнения (2). С учетом уравнения (9) после интегрирования получим время релаксации напряжений:

$$t_{\text{pe.n.}} = \left(\frac{1}{k_1}\right)^{\frac{1}{m}} \frac{1}{(1-mn)k_2} \sigma_i^{\frac{1}{m}-n} . \quad (13)$$

Таким образом, процесс заканчивается при конечной осадке:

$$\Delta = \Delta_1 + \Delta_2 = h_0 - h_1$$

и полностью снятом напряжении.

Готовое изделие охлаждается и извлекается из оснастки.

Технологические данные. Расчеты выполнены применительно к соединению давлением двух обечаек из алюминиевого сплава АМг6 при температуре 500 °C и полусфер из титанового сплава ВТ14 при 900 °C. Размеры заготовок: $r_1 = 147$ мм; $r_2 = 150$ мм; высоты зоны деформаций: $h_0 = 12$ мм; $h_1 = 10$ мм; $h_2 = 9$ мм. Рабочий ход при осадке $\Delta_1 = 2,0$ мм; при ползучести $\Delta_2 = 1,0$ мм. Константы уравнений приняты по данным работы [2].

Процесс состоит из следующих операций:

- подготовка заготовок (травление, меднение и др.) и сборка составных элементов
- вакуумирование и нагрев сборки в оснастке;
 - локальная осадка;
 - выдержка под давлением;
 - разгрузка в закрытой оснастке;
 - охлаждение и съем изделия;
 - контроль качества.

Технологические работы проводили на гидропрессе мод. ДБ2432. Зону сварки нагревали кольцевым индуктором ТВЧ. Параметры технологии по этапам процесса приведены в табл. 1.

1. Параметры технологии по этапам процесса

Материал	Давление при осадке q , МПа	Время осадки t_{oc} , мин	Давление при ползучести $q_{\text{полз.}}$, МПа	Время ползучести $t_{\text{полз.}}$, мин	Деформация ϵ_i
АМг6	1720	0,050,1	1518	45	0,35
BT14	1215	0,050,1	1012	30	0,25

Качество сварки по прочности и герметичности соответствовало требованиям эксплуа-

тации. Образцы корпусных изделий представлены на рис. 2.

Рис. 2. Корпусные изделия, полученные соединением обечаек из сплавов АМг6, ВТ14, ВТ6С

Вывод

Соединение обечаек давлением в твердой фазе эффективно для изготовления корпусов изделий ответственного назначения. Технология процесса проводится поэтапно: осадка, выдержка под давлением, разгрузка. При этом должны быть обеспечены режимы процесса по деформации, давлению, времени.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. **Чудин, В.Н.** Наукоемкая технология соединения давлением листовых деталей // Наукоемкие технологии в машиностроении. 2017. №3(69). С. 45-47.
- 2. **Изотермическое** деформирование высокопрочных анизотропных материалов / Яковлев, С.П., Чудин, В.Н. и др. М.: Машиностроение, 2003. 427с.
- 3. **Теория** обработки металлов давлением: Учебник для вузов / В.А. Голенков, С.П. Яковлев, С.А. Головин, С.С.

Яковлев, В.Д. Кухарь; под ред. В.А. Голенкова, С.П. Яковлева. – М.: Машиностроение, 2009. – 442 с.

4. **Работнов, Ю.Н.** Механика деформируемого твердого тела. – М.: Наука, 1979. – 744 с.

REFERENCES

- 1. Chudin, V.N. Science intensive technology of sheet steel connection by pressure // Science Intensive Technologies in Mechanical Engineering. 2017. No. 3(69). pp. 45-47.
- 2. Isothermal Deformation of High Strength Anisotropic Materials / Yakovlev, S.P., Chudin, V.N. et al. M.: mechanical Engineering, 2003. pp. 427.
- 3. Theory of Metal Pressure Forming: college textbook / V.A. Golenkov, S.P. Yakovlev, S.A. Golovin, S.S. Yakovlev, V.D. Kukhar; under the editorship of V.A. Golenkov, S.P. Yakovlev. M.: Mechanical Engineering, 2009. pp. 442.
- 4. Rabotnov, Yu.N. *Mechanics of Deformable Solid.* M.: Science, 1979. pp. 744.

Рецензент д.т.н. Б.М. Базров

