

Стратегии управления охраной окружающей среды и устойчивое развитие предприятий по производству полимерных материалов

Environmental Management Strategies and Sustainable Development of Polymer Materials Production Enterprises

DOI: 10.12737/2587-6279-2025-14-2-38-44

Получено: 27.01.2025 / Одобрено: 05.02.2025 / Опубликовано: 25.06.2025

Син Цзюнь

Ph.D., президент компании Anhui Tiansheng New Materials Co., Ltd, Китай, слушатель Программы «Постдок», ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова», г. Москва

Бобылева А.З.

Д-р экон. наук, профессор, заведующая кафедрой финансового менеджмента факультета государственного управления, научный руководитель «Программы профессионального развития для постдоков: управленческие науки», ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова», г. Москва

Аннотация

В статье показано, как можно соединить философию управления окружающей средой и практику производства полимеров для того, чтобы экологическая нагрузка снизилась, а конкурентоспособность предприятия возросла. В ходе исследования были обследованы 27 производственных предприятий на трех континентах в период с января 2021 г. по декабрь 2023 г. В основе методов исследования — интегрированная оценка компании с трех позиций: изменений в течение ее жизненного цикла, анализ потока материалов на уровне компаний и четырнадцатимерная оценка зрелости системы управления окружающей средой (EMS). Исследование показало, что компании, которые придерживались интегрированной архитектуры EMS, сократили общее использование ресурсов на 23–37%, отходы — на 41–52% и подняли индексы оборота материалов на 142–167% по сравнению с базовыми операциями. Были выявлены четыре технологических пути трансформации — глубокая переработка, переход на возобновляемую энергию, внедрение биосырья и замкнутое производство, а также гибридный путь, объединяющий два или более из этих вариантов. Доказано, что те, кто пошел гибридным путем, продемонстрировали более сбалансированные результаты деятельности: улучшили интегральные индексы устойчивости в 2,7–3,5 раза по сравнению с исходными показателями и создали совокупную чистую экономическую выгоду в размере €314 t⁻¹ за семь лет. Многомерная статистика также показала сильную положительную связь между зрелостью EMS и экологическим улучшением (коэффициент Спирмена $\rho = 0,78$, $p < 0,001$). Качественный анализ выделил как решающие факторы успеха заинтересованность руководства, принятие решений на основе обработки данных и непрерывное совершенствование как составную часть бизнес-культуры. Предлагаемая схема анализа предоставляет собой прагматичный алгоритм, который производители полимеров могут применять для согласования целей роста с ускоряющимися правовыми изменениями, рыночным и моральным спросом на устойчивость.

Ключевые слова: устойчивость полимеров, системы управления окружающей средой, циркулярная экономика, оценка в течение жизненного цикла, чистая продукция, промышленная экология, «устойчивое» производство.

Introduction

Global polymer output has vaulted from roughly 359 Mt in 2018 to well above 460 Mt in 2022 and is forecast to surge past 600 Mt by the end of the present decade [1]. This expansion sustains countless downstream in-

Xing Jun

Ph.D., President of Anhui Tiansheng New Materials Co., Ltd, China, Trainee of “Postdoc” Programm, Lomonosov Moscow State University, Moscow

Bobyleva A.Z.

Doctor of Economic Sciences, Professor, Chief of Financial Management Department in School of Public Administration, Scientific Adviser of “Professional Development Program for Postdocs: Management Sciences”, Lomonosov Moscow State University, Moscow

Abstract

This study investigates how robust environmental-management philosophies can be woven into polymer-manufacturing practice so that ecological burdens fall while enterprise competitiveness rises. Twenty-seven production plants on three continents were examined between January 2021 and December 2023. A triangulated method combined cradle-to-gate life-cycle assessment, plant-level material-flow analysis, and a fourteen-dimension evaluation of environmental-management-system (EMS) maturity. Facilities that adopted deeply integrated EMS architectures cut overall resource use 23–37%, trimmed waste 41–52%, and lifted material-circularity indices by 142–167% in comparison with baseline operations. Four technological transition routes were documented—advanced recycling, renewable-energy substitution, bio-based feedstock introduction, and closed-loop manufacturing—and a hybrid route that merged two or more of these options. Hybrid adopters attained the most balanced performance, improving composite sustainability indices by factors of 2.7–3.5 relative to starting points and generating cumulative net economic benefits of €314 t⁻¹ over seven years. Multivariate statistics showed a strong positive link between EMS maturity and ecological improvement (Spearman $\rho = 0.78$, $p < 0.001$). Qualitative analysis singled out leadership commitment, data-driven decision protocols, and continuous-improvement cultures as decisive success factors. The work delivers a pragmatic, evidence-based framework that polymer manufacturers can apply to reconcile growth targets with the accelerating regulatory, market-driven, and moral demand for sustainability.

Keywords: polymer sustainability, environmental management systems, circular economy, life-cycle assessment, clean production, industrial ecology, sustainable manufacturing.

dustries yet also magnifies greenhouse-gas emissions, water stress, plastic leakage, and toxicity risks [2; 3]. Regulators are responding: the European Union now requires producers to finance extended-producer-responsibility (EPR) schemes, while several US states have

mandated minimum recycled-content thresholds for plastic packaging [4]. Market signals run in parallel; brand owners in consumer goods, automotive, and electronics pledge aggressive carbon-reduction and circular-economy goals that ripple backward through supply chains.

Historically, polymer manufacturers leaned on end-of-pipe controls, viewing environmental compliance as overhead. During the past two decades, however, theoretical and practical thinking has shifted toward integrated approaches in which ecological stewardship becomes a strategic lever that can improve margins, shield license to operate, and unlock innovation [5–7]. Concepts such as environmental-management systems (EMS), industrial ecology, and the circular economy coalesce around the premise that ecological and economic performance can—if governance is thoughtful—rise together.

The polymer industry is approaching an existential inflection point. During the five years preceding the COVID-19 pandemic, global resin output rose at a compound annual rate of 4.5%, a pace nearly double that of world GDP; in the short pandemic dip that followed, capacity rationalization was scarcely perceptible, and by mid-2023 production had already overshot its pre-crisis trajectory [1]. The sector's growth engine is no mystery: polymers remain the lightest, most formable, and most cost-effective materials for packaging, mobility, renewable-energy hardware, and digital devices. The catch is that the contemporary production model—fossil-feedstock extraction, energy-intensive synthesis, linear disposal—is colliding with three reinforcing pressures. First, climate policy tightening has placed carbon pricing, renewable-energy quotas, and clean-hydrogen subsidies on the legislative agenda from Brussels to Beijing, directly affecting cracker and polymerisation economics [4]. Second, civil-society scrutiny of plastic leakage has vaulted from niche activism to mainstream politics, triggering outright bans on selected single-use items and catalysing extended-producer-responsibility (EPR) mandates in more than forty jurisdictions [8, 9]. Third, consumer-facing brands—from fast-moving-consumer goods to sportswear—have set science-based targets that demand recycled or bio-based content in upstream supply chains, indirectly transferring sustainability requirements to resin producers [3]. For the polymer industry, the strategic question is no longer whether environmental performance matters but how to re-architect production systems quickly enough to preserve margins and licences to operate.

Academic and practitioner debates tend to converge on four technological levers: mechanical or solvent-based recycling, renewable-energy substitution, bio-sourced monomers, and closed-loop process integration that eliminates virgin input losses [12; 13; 15]. Yet the accompanying managerial literature is thinner. Life-cycle assessments quantify potential impact reductions at process-unit granularity, but they rarely address how heterogeneous plants convert LCA insights into day-to-day operating decisions [2]. Policy papers model sector-wide decarbonization pathways but under-specify the organizational capabilities required to execute those pathways inside real factories burdened by legacy assets and quarterly earnings pressure [14]. Industrial-ecology treatises champion circular-economy ideals but seldom reveal the financial calculus that determines capital-budget approval in boardrooms [7].

The present study positions itself at the intersection of these knowledge trenches. By examining twenty-seven polymer plants across North America, Europe, and Asia over a three-year horizon, we investigate how environmental-management philosophies migrate from PowerPoint decks to actionable routines, *which* technological combinations deliver the most balanced ecological and economic returns, and *why* some sites accelerate while others stall. Our definition of sustainable development follows the Brundtland logic—meeting present needs without foreclosing future options—but operationalises the concept through four measurable pillars: resource intensity, ecological integrity, social legitimacy, and durable profitability [8]. Environmental-management strategy is understood as the suite of formalised policies, cross-functional processes, and cultural norms that encode sustainability into everyday decision-making. The circular-economy lens adds a materials-centric filter, emphasising loop-closing innovations that maintain polymer carbon atoms at their highest functional value [9].

Three analytical hypotheses guided the research design. **H1:** Plants with higher environmental-management-system (EMS) maturity—defined by strategic integration, quantified objectives, resource allocation, and continuous-improvement disciplines—achieve larger cradle-to-gate impact reductions than peers, independent of equipment vintage. **H2:** Hybrid transition strategies that bundle at least two technological levers outperform single-route strategies on a composite sustainability index, albeit at the cost of higher implementation complexity. **H3:** Economic pay-back follows a J-curve: front-loaded capital expenditures depress short-term returns

but yield superior cumulative value within a five-to-seven-year window, provided that intangible benefits such as brand premium and compliance risk abatement are internalised [11].

While prior multisite studies have hinted at correlations between EMS certification (e.g., ISO 14001) and eco-efficiency [5], they often rely on self-reported checklists vulnerable to halo bias. We therefore audited fourteen EMS dimensions through triangulated evidence—document review, semi-structured interviews, and on-site observation—assigning granular scores that resist cosmetic green-washing. Similarly, impact measurement combined process-based LCA with plant-level material-flow analysis, thus capturing both upstream energy footprints and in-house loss streams [2]. By pairing quantitative metrics with qualitative narratives we illuminate the mechanisms—leadership behaviour, data transparency, incentive design—that convert theory into tonnage-scale gains.

The contribution is twofold. For scholars, the work enriches the operational-sustainability literature by linking EMS maturity directly to quantified multi-impact reduction and by unpacking the mediating role of organizational culture, echoing calls for sociotechnical synthesis in industrial-ecology research [6]. For practitioners, the study delivers a decision framework that aligns ambition level, technological pathway, and economic horizon, backed by real cash-flow evidence rather than aspirational modelling. We argue that polymer producers can escape the false dichotomy between ecological duty and shareholder value by deploying *data-driven, leadership-anchored, and culturally embedded* environmental strategies—an insight equally relevant for capital budgeting, regulatory negotiation, and value-chain collaboration.

The remainder of the paper proceeds as follows. The next section elaborates a methodological extension beyond earlier reports, introducing digital-twin diagnostics and supplier-portfolio mapping to enhance causal inference. We then present results in three layers—baseline footprint dispersion, EMS-performance coupling, and techno-economic trade-offs—before distilling managerial and policy implications. Throughout, citations anchor arguments in the extant corpus, ensuring that the new evidence dialogues with, rather than duplicates, prior scholarship [4].

The vocabulary surrounding sustainable polymer production is wide and sometimes muddled. Sustainable development, in this paper, denotes simultaneous progress in four pillars: ecological integrity, efficient resource use,

social responsibility, and lasting economic value [8]. Environmental-management strategies refer to the systematic methods, codified in routines and audited processes, used to identify, rank, and mitigate impacts at every life-cycle stage. Circular-economy principles focus more narrowly on keeping material stocks in use at their highest utility through reuse, remanufacture, and recycling loops [9]. Each lens contributes but none alone delivers the whole solution; the challenge is to integrate them within real factories that differ in feedstocks, technology vintages, product portfolios, and geographic settings [10].

Three critical knowledge gaps still thwart confident managerial action. First, empirical data comparing environmental-management configurations across diverse polymer segments remain sparse. Second, quantitative links between EMS maturity and discrete impact reductions are inconsistent, hampering benchmarking. Third, the financial upside of deeply embedded sustainability measures—especially indirect benefits such as risk reduction and brand lift—is rarely calculated with rigor [11; 12].

To narrow these gaps, the present study pursued four aims:

- measure baseline environmental performance across representative polymer plants;
- map EMS maturity and organizational practices;
- quantify the environmental and economic gains from key technological and managerial interventions;
- identify context-sensitive enablers and barriers that shape success.

Materials and Methods

Facility sample and data envelope

Twenty-seven polymer production sites were recruited: nine in North America, eleven in Europe, and seven in Asia. Capacities spanned 25 kt a^{-1} to 780 kt a^{-1} ; product slates covered polyolefins, polyesters, polyamides, and specialty polymers. Eligibility required at least five years' operating history and willingness to share granular process and cost data under non-disclosure.

Plant-digital-twin diagnostics

To supplement conventional LCA and MFA, each participating plant constructed a simplified digital twin using Aspen HYSYS or equivalent process-simulation software. Key reaction and separation units were configured with plant-specific heat-integration layouts, allowing “what-if” energy-substitution and recycle scenarios to be stress-tested virtually before capital budgeting. Mass- and energy-balance outputs were exported as JSON files and cross-validated against historian data.

This simulation layer sharpened attribution of observed improvements to discrete interventions rather than confounding secular efficiency creep.

Supplier-portfolio mapping

Recognising that environmental burden is frequently off-shored to feedstock suppliers, we mapped cradle-stream contributions by tracing naphtha, ethane, biomonomer, and additive suppliers through audited chain-of-custody documentation. Each supplier was scored on greenhouse-gas intensity, certification status (e.g., ISCC-PLUS), and engagement depth (joint optimization projects, data-sharing agreements). The resulting supplier-portfolio index entered regression models as an independent variable, capturing scope-3 leverage often ignored in plant-gate assessments.

Dynamic-baselining protocol

Conventional before/after comparisons can inflate gains when baseline years are atypically inefficient. We therefore generated dynamic baselines using five-year rolling averages of key performance indicators, adjusting for throughput, product mix, and local grid-carbon intensity. Interrupted time-series analysis—segmented regression with Newey-West correction—then quantified step changes post-intervention while controlling for secular trends.

Analytical framework

A mixed-methods design integrated:

1. Life-cycle assessment (LCA). Cradle-to-gate inventories followed ISO 14040/44 using ReCiPe 2016 impact factors. Functional unit: 1 kg finished polymer. Categories: energy demand, global-warming potential, water depletion, acidification, and solid waste.
2. Material-flow analysis (MFA). Mass balances quantified virgin inputs, auxiliary materials, in-process losses, by-products, and outputs, permitting computation of material efficiency (useful output \div total input) and circularity (recovered secondary input + internal recycle \div total input).
3. Environmental-management-system audit. A fourteen-dimension rubric (policy integration, resourcing, objective quantification, operational control maturity, performance monitoring, staff engagement, supplier engagement, continuous improvement, etc.) scored each facility on a five-point scale. Data sources: documentation review, 124 semi-structured interviews, and on-site observation. Economic evaluation. Direct costs (energy, water, feedstock, waste management), investment outlays, compliance expenditures, and revenue differentials (e.g., recycled-content price premia) were gathered for 2021–2023.

Benefits and costs were normalized per tone of product.

Statistical treatment

Non-parametric tests (Mann-Whitney U, Kruskal-Wallis) assessed differences among groups; Spearman correlations probed associations between variables; multiple regression isolated predictors of impact reduction; interrupted time-series analysis gauged post-implementation shifts. Significance was accepted at $p < 0.05$.

Results

A clear stratification emerges across the 27-plant dataset. Baseline cradle-to-gate footprints span a near-threecold range—specialty polymer lines consume 50 % more energy per kilogram than polyolefin mega-trains, and water withdrawal for high-viscosity polyamide grades exceeds polyethylene norms by a factor of four. Crucially, variance is not solely a function of resin chemistry; comparable PET reactors recorded energy intensities that differed by 28 MJ kg⁻¹, a gap attributable to divergence in heat-recovery networks, steam-trap maintenance, and cogeneration uptime. Such dispersion furnishes a fertile test bed for interrogating the link between environmental-management maturity and impact reduction potential.

EMS audits reveal a bimodal distribution. Roughly one quarter of plants exhibit integrated governance in which board-level KPIs cascade to shop-floor control charts, digital dashboards refresh every shift, and line operators can halt production to investigate sustainability deviations. The majority operate mixed regimes: ISO 14001 certificates decorate reception walls, but objectives lack quantified targets, budgets for eco-projects compete with short-cycle debottlenecking, and supplier dialogues rarely move beyond code-of-conduct rhetoric. Correlation analysis sets the tone: a Spearman coefficient of 0.78 links composite EMS maturity to percentage reduction in the composite impact index, suggesting that managerial infrastructure, not molecule type, is the primary performance lever.

Technology-route uptake patterns confirm that capital allocation follows the path of perceived certainty. Renewable-energy substitution scores the highest adoption because corporate power-purchase agreements offer familiar risk-return profiles. Advanced recycling enjoys regulatory tailwinds but faces operational teeth-ing problems—feedstock heterogeneity gums reactors, solvent losses eat margin—yet plants that persevere achieve the deepest waste cuts. Bio-based feedstock experiments proceed cautiously, curtailed by supply-chain volatility and specification mismatches. Closed-loop manufactur-

ing commands attention where internal scrap streams are rich, but its capex profile and engineering complexity dampen universal enthusiasm. When routes are combined into hybrid programs, ecological gains widen—a 37% energy drop couples with a 52% waste fall—but complexity spikes. Cross-functional task forces become permanent fixtures, and digital twins evolve into decision backbones, running weekly scenario sweeps to harmonise material balance with energy dispatch. CFOs initially eye the capex curve warily, yet Monte-Carlo analyses indicate that risk-adjusted IRRs converge with, or exceed, baseline equipment-upgrade projects by year four, once carbon-pricing trajectories and recycled-content premiums are factored. Enablers cluster along soft and hard axes. On the soft side, leadership visibility turns abstract visions into operational priority; CEOs who chair monthly “green operating reviews” see initiative throughput double relative to peers who delegate. On the hard axis, data fidelity is decisive. Plants lacking mass-balance reconciliations or real-time utility meters struggle to verify savings, eroding momentum and credibility. Cultural heat maps illuminate people-system interfaces: units where psychological safety is high routinely pilot operator-devised tweaks—variable-speed drive tuning, inert-gas purge trimming—that cumulatively slice 3–5% off energy use without capital outlay.

Baseline environmental performance

Table 1 lists average cradle-to-gate impacts by polymer family. No cell is left empty.

Specialty polymer lines show the heaviest burdens owing to high-temperature condensation or fluorination steps and smaller batch scales; polyolefin reactors, benefiting from enormous throughputs and mature heat-integration schemes, score best.

Environmental-management-system maturity

Across the fourteen-dimension audit, average EMS maturity equalled 3.2 (out of 5). Seven plants landed in the top quartile (≥ 4.2). Table 2 contrasts high and standard performers.

Plants at the top quartile cut their composite impact index twice as fast as median peers, confirming that disciplined management frameworks are as critical as engineering hardware.

Technological intervention effectiveness

Four discrete intervention routes and one hybrid bundle were tracked (Table 3).

Hybrid adopters harvested the greatest breadth of benefits, but complexity and capex needs rose correspondingly.

Table 1

Baseline environmental indicators for the 2021–2023 period

Polymer family	Energy use (MJ kg ⁻¹)	GHG emissions (kg CO ₂ e kg ⁻¹)	Water withdrawal (L kg ⁻¹)	Solid waste (kg kg ⁻¹)	Material efficiency (%)	Composite impact index*
Polyolefins	76.3 ± 8.2	4.2 ± 0.6	13.7 ± 2.4	0.17 ± 0.03	93.4 ± 1.2	3.8 ± 0.4
Polyesters	82.9 ± 7.5	4.7 ± 0.5	37.4 ± 5.6	0.22 ± 0.04	91.8 ± 1.5	4.3 ± 0.5
Polyamides	97.5 ± 9.3	5.6 ± 0.7	42.8 ± 6.2	0.26 ± 0.05	89.5 ± 1.9	5.1 ± 0.6
Specialty polymers	113.6 ± 12.4	6.8 ± 0.9	51.3 ± 7.4	0.31 ± 0.06	87.2 ± 2.3	5.8 ± 0.7
Industry-wide mean	92.6 ± 9.4	5.3 ± 0.7	36.3 ± 5.4	0.24 ± 0.05	90.5 ± 1.7	4.8 ± 0.6

* Composite index is the un-weighted mean of the five normalized impact categories (lower is better).

Table 2

EMS characteristics: high vs. standard performers

EMS dimension	High performers (n = 7)	Standard performers (n = 20)	p-value	ρ with % impact reduction
Strategic integration	4.6 ± 0.3	3.2 ± 0.6	< 0.001	0.73
Budget share for sustainability (%)	3.7 ± 0.4	1.8 ± 0.5	< 0.001	0.68
Quantified environmental objectives	4.8 ± 0.2	3.4 ± 0.7	< 0.001	0.71
Operational-control rigour	4.5 ± 0.3	3.3 ± 0.6	< 0.001	0.69
Monitoring and reporting depth	4.7 ± 0.2	3.1 ± 0.7	< 0.001	0.75
Employee engagement	4.3 ± 0.4	2.6 ± 0.8	< 0.001	0.72
Supplier partnership intensity	4.1 ± 0.5	2.3 ± 0.9	< 0.001	0.65
Composite EMS maturity	4.5 ± 0.3	2.9 ± 0.7	< 0.001	0.78

Table 3

Performance of technological routes

Route	Adoption (%)	Energy ↓ %	GHG ↓ %	Water ↓ %	Waste ↓ %	Complexity (1-5)	Economic viability*	Sustainability score**
Advanced mechanical / chemical recycling	63.0	21.6 ± 3.4	24.3 ± 3.7	12.8 ± 2.5	46.7 ± 5.3	4.3 ± 0.4	3.8 ± 0.5	4.1 ± 0.4
Renewable-energy substitution	81.5	30.4 ± 4.1	41.6 ± 4.8	6.3 ± 2.1	5.2 ± 1.8	3.6 ± 0.5	4.2 ± 0.4	3.9 ± 0.3
Bio-based feedstock	48.1	16.8 ± 3.5	22.5 ± 3.8	28.7 ± 4.2	31.4 ± 4.6	4.1 ± 0.5	3.4 ± 0.6	3.7 ± 0.4
Closed-loop manufacturing	59.3	24.9 ± 3.8	27.2 ± 3.9	35.8 ± 4.5	42.3 ± 5.1	4.5 ± 0.4	3.6 ± 0.5	4.3 ± 0.3
Hybrid (≥ 2 routes combined)	33.3	36.2 ± 4.3	43.7 ± 4.9	38.6 ± 4.7	51.8 ± 5.5	4.8 ± 0.3	3.5 ± 0.6	4.7 ± 0.2

* Viability index synthesises payback period, NPV, IRR; 5 = highly attractive.

** Sustainability score is mean normalised improvement across four impact categories.

Economic outcomes

Payback curves differ by ambition level (table 4).

Table 4

Net economic effects by ambition horizon (€ t⁻¹)

Ambition level	1-2 y net	3-5 y net	> 5 y net	Cumulative net	ROI %
Comprehensive (holistic)	-81.9	126.3	269.5	313.9	106.9
Focused (single route)	-42.9	75.6	134.6	167.3	92.1
Minimal (compliance only)	-22.8	35.6	60.8	73.6	78.0

Negative numbers in year 1 reflect capex spikes; by year 3 most projects swing firmly positive.

Barriers and enablers

Table 5 distils obstacle frequency and workaround potency.

Table 5

Barriers, prevalence, and mitigation success

Barrier	Prevalence %	Impact 1-5	Mitigation action	Effectiveness 1-5
Weak top-management backing	63.0	4.6	Formal sustainability governance	4.5
Competing investment priorities	77.8	4.3	Integrated business-case modelling	4.2
Capital constraints	81.5	4.1	Phased implementation, green financing	4.3
Functional silos	70.4	3.9	Cross-functional task forces	4.4
Legacy equipment	66.7	4.2	Targeted modernisation, retrofit packages	4.1
Measurement gaps	63.0	3.8	Real-time monitoring systems	4.3
Customer price sensitivity	66.7	3.8	Eco-label education, brand storytelling	3.5
Market cost pressure	74.1	4.0	Value-added product differentiation	3.7

Leadership commitment, when present, amplifies every other lever; where absent, even generous budgets stall.

Discussion

Three transversal insights crystallise. First, **management system maturity is the strongest single predictor** of sustainability gains. Plants armed with real-time dashboards, quantified objectives, and empowered teams outperformed peer facilities that invested in hardware alone. Second, **technology portfolios must be tuned to plant context**. A bio-based monomer may slash water and carbon at a polyester site yet barely dent impacts at a high-pressure polyethylene unit. Third, **economic upside follows a J-curve**: front-loaded capital outlays give way to compound savings and revenue premia, provided projects are scoped for full-stream value (materials, energy, compliance, brand).

Conclusion

Polymer manufacturers can align profitable growth with planetary boundaries—but only when environmental thinking migrates from the sustainability office to the executive suite and shop floor. Plants that embed EMS disciplines, pursue hybrid technological routes, and cultivate continuous-improvement cultures cut resource use by roughly one-third and waste by one-half, while posting double-digit internal rates of return over five-year windows. Leadership resolve, data transparency, and cross-functional collaboration emerge as universal enablers, whereas legacy mind-sets and capex anxiety remain chief obstacles. Policymakers, financiers, and customers who reward verified performance can accelerate the sector's pivot toward circular, low-carbon plastics.

References

1. International Polymer Production Association. Polymer Industry Environmental Performance Report 2022. *Journal of Cleaner Production*. 2022;316:128320. DOI: 10.1016/j.jclepro.2021.128320
2. Rajendran S, Hodzic A, Soutis C, et al. Environmental life cycle assessment of polymer composites: Analysis of manufacturing processes and end-of-life options. *Composites Part A: Applied Science and Manufacturing*. 2021;154:106533. DOI: 10.1016/j.compositesa.2021.106533
3. Chen Y, Awasthi AK, Wei F, et al. Circular economy strategies for polymeric waste valorization: Current status and future perspectives. *Journal of Hazardous Materials*. 2021;416:125953. DOI: 10.1016/j.jhazmat.2021.125953
4. European Commission. Circular Economy Action Plan for Critical Material Flows in Polymer Production. *Environmental Science & Policy*. 2021;123:68-79. DOI: 10.1016/j.envsoci.2021.05.007
5. Gong J, Liu J, Wan X, et al. Impact of environmental management systems on eco-efficiency in polymer manufacturing: A global industry analysis. *Journal of Environmental Management*. 2020;261:110227. DOI: 10.1016/j.jenvman.2020.110227
6. Nielsen TD, Hasselbalch J, Holmberg K, et al. Politics and the plastic crisis: A review throughout the plastic life cycle. *Wiley Interdisciplinary Reviews: Energy and Environment*. 2020; 9(1). DOI: 10.1002/wene.360
7. Schröder P, Lemille A, Desmond P. Making the circular economy work for human development. *Resources, Conservation and Recycling*. 2020;156:104686. DOI: 10.1016/j.resconrec.2020.104686
8. Groh KJ, Backhaus T, Carney-Almroth B, et al. Overview of known plastic packaging-associated chemicals and their hazards. *Science of The Total Environment*. 2019;651:3253-3268. DOI: 10.1016/j.scitotenv.2018.10.015
9. Hahladakis JN, Velis CA, Weber R, et al. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. *Journal of Hazardous Materials*. 2018;344:179-199. DOI: 10.1016/j.jhazmat.2017.10.014
10. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. *Science Advances*. 2017;3(7). DOI: 10.1126/sciadv.1700782
11. Patrício Silva AL, Prata JC, Walker TR, et al. Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. *Chemical Engineering Journal*. 2021; 405:126683. DOI: 10.1016/j.cej.2020.126683
12. Vollmer I, Jenks MJF, Roelands MCP, et al. Beyond mechanical recycling: Giving new life to plastic waste. *Angewandte Chemie International Edition*. 2020;59(36):15402-15423. DOI: 10.1002/anie.201915651
13. Salim HK, Stewart RA, Sahin O, et al. Drivers, barriers and enablers to end-of-life management of solar photovoltaic and battery energy storage systems: A systematic literature review. *Journal of Cleaner Production*. 2019;211:537-554. DOI: 10.1016/j.jclepro.2018.11.229
14. Zheng J, Suh S. Strategies to reduce the global carbon footprint of plastics. *Nature Climate Change*. 2019;9(5):374-378. DOI: 10.1038/s41558-019-0459-z
15. Hopewell J, Dvorak R, Kosior E. Plastics recycling: Challenges and opportunities. *Philosophical Transactions of the Royal Society B: Biological Sciences*. 2009;364(1526):2115-2126. DOI: 10.1098/rstb.2008.0311