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AHHOTAIUSA

buomMerpus Ha ocHOBe 2ekTpokapauorpamMmbl (OKI') mpennaraer mepcneKTUBHOE pelieHue s
0e30macHON W HANEKHOW ayTeHTU(UKAIMM, WCIONb3ys YHHUKAIbHBIE W BHYTPEHHUE
xapaktepuctuku OKI' curnanoB. B oTiauuue OT BHEIMIHMX MPU3HAKOB, TAaKUX Kak OTHEYATKH
najableB Win pacno3HaBanue nui, DKI' curHansl sBISIOTCS BHYTPEHHUMU ISl TENA, 4TO JIeJaeT
UX BBICOKOYCTOWYUBBIMHM K TOJAENIKE U TapaHTHPYET, YTO TOJBKO >KHUBBIC JIIOAU MOTYT OBITH
IOPOBEPEHbl U AyTEHTU(HUIMPOBAHBL. XOTS CYIIECTBYIOLIHE HCCICIOBAHUS B OCHOBHOM
COCPEIOTOUYEHBI HAa CUCTEMAX C 3aKPhITHIM MHOXECTBOM, KOTOpPBIE padOTAaIOT B IIpe/ieiax 3apaHee
OTNpeNIeICHHBIX ~HA0OpOB  JAHHBIX, peAJIbHbIE MPUIOKEHHUS TPeOYIOT BO3MOXKHOCTEH
pacrno3HaBaHUs C OTKPHITHIM MHOKECTBOM. Pacro3HaBaHue ¢ OTKPBITHIM MHOKECTBOM O3HAYAET,
YTO CHUCTEMBbI JOJKHBI YMETh paclo3HaBaTh 3apErMCTPUPOBAHHBIX IIOJIb30BAaTElIe U
OJIHOBPEMEHHO OTKJIOHSTh HEM3BECTHBIX JIMI, YTO NPUBOJUT K CJEIYIOINIMM BBI30BAM:
BapuabeIbHOCTh CUTHAJIOB, OrpaHHYEHHas 000O0IIaeMOCTh KIIACCH(PHUKATOPOB M HEIOCTATOK
OoraTeix HAOOPOB NMaHHBIX. B 3TOM 0030pe paccMaTpuBalOTCs OCOOCHHOCTH MPOCKTHPOBAHUS,
BBI30BBI M pEIICHHs IS peanusanuu Ouomerpuu Ha ocHOBe OKI' B yCIOBHSX OTKPBITOTO
MHOecTBa. OOCyX)AaroTcsl epeIoBble METOABI KiIacCU(UKALMK, BKIIOYas MOJEIU TTyOOKOro
0o0ydYeHHUsl, TEXHUKH KIACCH(PUKAIMU M HOBBIE MOJEIH, OPUCHTUPOBAHHBIC HA OTKPHITHIE
MHOKecTBa, Takue kak OpenMax u EVMs. Kpome TOro, aHaausupyercsi pojib H3BJICUYECHUS
MPU3HAKOB, YBEJIMUEHUS JaHHBIX U METPHUK OILICHKU B MOBBIIICHUHU MPOU3BOIUTEILHOCTH CUCTEM.
Pemenue stux 3amau MoxeT caenatb Ouomerpuio Ha ocHoBe DKI' ocHOBOW miist Ge3omacHOi
ayreHTH(UKanuu B 3apaBooxpanenuu, Murepuere Bemen (IoT) u ¢punancoBbIX cucremax. OTa
CTaThs HampaBjieHa Ha TO, YTOOBI HAIIPABUTH OyAyIIHMe HCCIEI0BaHUs Ha pa3pabOTKy HalEeXKHBIX
U MacHITabupyeMbIx OMoMeTpuyecKux cucrteM Ha ocHoe DKI'.

KuarwueBbie cioBa: buomerpus Ha ocHoBe OKI', pacno3HaBaHHE C OTKPBITHIM MHO>KECTBOM,
pacmo3HaBaHUE C 3aKPBITBIM MHOXXECTBOM, CHCTEMBl ayTCeHTH(HUKAIUU, BapraOeIbHOCTh
CUTHAJIOB, MOJIeNIU Kiaccudukanuu, rioyookoe odyuenue, OpenMax, sKcTpeMalbHbIE MallluHBI
3HaueHuii (EVMs).

19



Abstract

Electrocardiogram (ECG)-based biometrics offer a promising solution for secure and reliable
authentication, leveraging the unique and intrinsic characteristics of ECG signals. Unlike external
traits such as fingerprints or facial recognition, ECG signals are internal to the body, making them
highly resistant to spoofing and ensuring that only live persons can be verified and authenticated.
While existing research has largely focused on closed-set recognition environments, where
systems operate within predefined datasets, real-world applications demand open-set recognition
capabilities. Open-set recognition means that the systems must recognize the enrolled users and at
the same time reject the unknown individuals, which poses the following challenges: variability of
signals, limited generalization of classifiers, and lack of rich datasets. This review examines the
design considerations, challenges, and solutions for implementing ECG biometrics in open-set
environments. Advanced classification methodologies that include deep learning models,
classification techniques, and new open-set specific models including OpenMax and EVMs are
discussed. Additionally, the role of feature extraction, data augmentation, and evaluation metrics
in improving system performance is analyzed. By addressing these challenges, ECG biometrics
can become the basis for secure authentication in health care, IoT and financial systems. This paper
aims to guide future research toward developing robust and scalable ECG-based biometric
systems.

Keywords: ECG Biometrics, Open-Set Recognition, Closed-Set Recognition, Authentication
Systems, Signal Variability, Classification Models, Deep Learning, OpenMax, Extreme Value
Machines (EVMs).

Introduction

The study of philological terms is a fascinating exploration into the intricate world of
Biometric recognition systems are the basis of the modern identification and recognition that offer
safer and more comfortable ways compared to traditional approaches like passwords and tokens
[1]. They become a key form of user authentication such as smartphones, banks, websites and
airports [2][3][4]. Among the diverse biometric modalities, electrocardiogram-based (ECG)-based
biometrics stand out because of their unique physiological characteristics. ECG signals, which
reflect the electrical activity of the heart, offer intrinsic advantages including individuality,
universality, and resilience against forgery [5][6]. Unlike external traits, such as fingerprints or
facial features, ECG signals are internal to the human body and can only be recorded from living
individuals, enhancing their security and robustness [7][8]. Although ECG-based biometric
systems have shown significant promise, much of the existing research and development has been
limited to closed-set recognition. In closed-set scenarios, the system operates within a predefined
set of known individuals, focusing solely on identifying or verifying the users from this set [9][10].
However, real-world applications often require open-set recognition, where the system encounters
unknown subjects that are not included in training data. Open-set recognition systems must not
only identify enrolled users, but also confidently reject imposters or unregistered individuals,
which is a critical capability for enhancing robustness and reliability. Open-set recognition
presents unique challenges for ECG biometrics. Variability in ECG signals owing to physiological
differences, environmental factors, and hardware configurations complicates the task of
distinguishing between known and unknown individuals [11]. Furthermore, the lack of diverse and
standardized datasets tailored for open-set scenarios limits the ability to train and evaluate robust
models [12]. Current methodologies, although effective in controlled settings, often fall short when
applied to dynamic and unpredictable real-world environments. This review aims to provide a
comprehensive investigation of ECG biometrics in open-set recognition environments by
examining the design considerations, challenges, and solutions required to advance the field [13].
These are signal acquisition, preprocessing, feature extraction, and classifier design with special
emphasis on the variability and uncertainty that are characteristic of open-set problems. By
addressing these issues, this paper seeks to guide future research and development toward creating
practical, scalable, and adaptive ECG biometric systems capable of meeting the demands of real-
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world applications.

Background

Biometric systems leverage unique physiological or behavioral traits to authenticate
individuals, providing a secure alternative to conventional authentication methods [1]. Among the
numerous biometric modalities, electrocardiogram (ECG)-based systems stand out due to the
intrinsic link between an individual’s cardiac activity and their identity [14]. ECG signals are not
only unique to each individual but also challenging to replicate, making them a promising
biometric modality for secure authentication systems. Interestingly, the ECG biometric modality
as presented in Table 1, has shown to be the most promising than the other biometric modalities
in terms of most of the characteristics used in describing biometric modality quality [15][16][17].

ECG Signals and Their Biometric Properties

The electrocardiogram (ECQ) is a graphical representation of the heart's electrical activity
over time, recorded using electrodes placed on the body [18]. An ECG signal is characterized by
a repeating waveform that includes distinct components such as the P wave, QRS complex, and T
wave as shown in Fig. 1. Each of these components reflects specific phases of the cardiac cycle:
the P wave represents atrial depolarization, the QRS complex corresponds to ventricular
depolarization, and the T wave indicates ventricular repolarization [19]. The morphology and
temporal characteristics of these features vary significantly between individuals due to anatomical
and physiological differences, making ECG signals uniquely identifiable.

Depolarization
@ Depolarized

Repolarization

Fig. 1. The series of depolarization and repolarization in the heart, in relation to different
waveforms in an ECG signal.
Table 1 - Pros and cons of the ECG when compared with the other biometric modalities.

Modality Advantages Disadvantages

Universality, uniqueness,

ECG permanence, and liveness assurance,
hidden nature, simple acquisition
High reliability, permanent over
Palmprint time, fast recognition even with low
resolution scanners and cameras

Requires contact, variability
induced by human activity

Requires physical contact with the
system

Requires physical contact with the
system, accuracy influences by
obstacles such as cuts, scars, dust,

Matching Process is fast, consumes
Fingerprint less memory space, less expensive,
reliable, high accuracy

dirt, twists
Voice Easy implementation, Less Accuracy influenced by throat
expensive and convenient to use disease, low performance
High speed of processing, small .
. £l Spe pro g, Sthé Diseases may affect the accuracy,
Iris sample size, requires no physical . .
contact expensive equipment
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Non-invasive, easy image capture, Low accuracy, computationally
2

Gait no distance problem, affordable .
) expensive
equipment
No physical contact involved, can be | Facial traits may change with time,
quantified, relatively simple age, accidental happenings;
Face . ey o1
measures, low-cost measuring depends on face visibility and

instruments, quick time to recognize lighting
Time consuming, may be

The trait cannot be faked; it is physically uncomfortable
Retina believed to be one hundred percent requiring physical touch; diseases
correct such as cataract, hypertension

affect the efficiency

Open-Set vs. Closed-Set Recognition

Biometric recognition systems are generally categorized into two main paradigms according
to classification task problems: closed-set recognition and open-set recognition [20]. Each
paradigm addresses different operational requirements, with significant differences in their
assumptions, capabilities, and real-world applicability.

Closed-Set Recognition

Overall, the materials and methods used in this study provide a comprehensive and nuanced
understanding of the origin and formation of philological terms. By drawing on a diverse range of
sources and methodologies, this study aims to contribute to the broader field of linguistics and
philology by shedding light on the complex processes through which languages and their
associated terms have evolved over time.

Open-Set Recognition

In contrast, open-set recognition reflects the reality of real-world systems where the system
must account for the presence of unknown individuals. These systems must not only identify
enrolled users but also accurately reject imposters or unknown subjects [24]. This additional
capability introduces challenges that are absent in closed-set systems, such as (1) Signal Variability
where variations in ECG signals due to physiological changes (e.g., heart rate variability, stress),
environmental factors (e.g., noise, electrode placement), or hardware inconsistencies. (2)
Generalization where the need for classifiers to handle unseen data without overfitting to the
training set [25]. (3) Data Scarcity where the lack of diverse datasets that represent real-world
scenarios, including variations in demographics, health conditions, and acquisition settings [26].
Based on Donald Rumsfeld's [27] "knowns and unknowns" concept, open-set recognition can be
further expanded into four kinds of classes:

e Known Known Classes (KKCs): Labeled positive samples in the classes.

e Known Unknown Classes (KUCs): They have been labeled as negative samples
that indicate potential outliers of the data set.

e  Unknown Known Classes (UKCs): Classes with no specific samples for variants
during the training process but other side information (e.g., semantic attributes).

e  Unknown Unknown Classes (UUCs): Can Improve classes with no prior information
or labeled samples.

Fig. 2 illustrates the relationships between these categories, showing how open-set
recognition expands upon traditional classification by introducing mechanisms for handling UUCs
and UKCs [28]. Table 2 presents a comparative analysis of these techniques, delineating their
respective settings, training requirements, and objectives, while emphasizing the adaptability of
open-set recognition for practical applications [26].
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Fig. 2. An example of visualizing KKCs, KUCs and UUCs from the real data distribution using
t-SNE.
Table 2. shows the distinction between open set recognition and the related tasks discussed
above.

Task Description Goal

Relies on the ability to classify
Traditional through known classes using training Classifying known
Classification and testing information sourced from known classes

the same set of known people.

Classification with

Includes a reject option to identify
low-confidence samples but still only

Classifying known
known classes &

Reject Option classifies within the known set. rejecting samples of low
confidence

One-class Detects outliers by training on known

Classification classes and some near-boundary or . )
Detecting outliers

(Anomaly unrelated samples from unknown

Detection) classes.

One/Few-shot
Learning

Learn to classify unknown classes
using a limited number of examples
for each new class.

Identifying unknown
known classes

Generalized Few-
shot Learning

Expands few-shot learning to both
known and unknown classes,
identifying and handling unknown
classes effectively.

Identifying known
known classes &
unknown known classes

Zero-shot Learning

Uses semantic information or side
data to classify unknown classes
without any training examples for
them.

Identifying unknown
known classes

Generalized Zero-
shot Learning

Combines semantic data and known
examples to handle both known and
unknown classes effectively.

Identifying known
known classes &
unknown known classes

Open Set
Recognition

Identifies known classes while
rejecting unknown samples, focusing
on flexible decision-making for real-
world applications.

Identifying known
known classes &
rejecting unknown
unknown classes

Generalized Open
Set Recognition

Handles both known and unknown
classes, using semantic data to
understand unknown classes beyond
rejection.

Identifying known
known classes &
cognizing unknown
unknown classes
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Classification Techniques

Classification techniques play an important role in the execution of closed-set and open-set
biometric systems since it involves the right classification of the extracted features by mapping
them into certain classes or labelled as unknown by the system [29]. This section describes the
development of classification techniques from previous methods to new strategies developed to
suit new advances in the open-set recognition [30].

Traditional Classification Methods

Classification techniques form the backbone of biometric systems, enabling the
identification or verification of individuals based on extracted features [31]. Traditional methods,
such as k-Nearest Neighbors (k-NN), Support Vector Machines (SVMs), and Linear Discriminant
Analysis (LDA), have been widely employed in closed-set recognition tasks due to their simplicity
and effectiveness in controlled environments [32]. For instance, k-NN assigns class labels based
on the majority vote of the nearest neighbors in the feature space, making it particularly effective
for small-scale datasets. SVMs, on the other hand, separate classes by constructing hyperplanes in
a high-dimensional space, which allows for robust generalization. LDA focuses on maximizing
the separability between classes by finding a linear combination of features that best separates
them. While these traditional methods have achieved substantial success in closed-set scenarios,
their reliance on predefined decision boundaries limits their applicability to open-set recognition,
where the system must handle unknown classes [33] [34]. Without the ability to reject inputs from
unknown classes, these methods often misclassify such inputs into one of the known classes,
reducing system reliability.

Emerging Classification Methods

To overcome the limitations of traditional classifiers, emerging techniques have been
developed to address the unique requirements of open-set recognition [35]. Deep learning-based
approaches, such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs), have shown significant promise due to their ability to learn complex, high-dimensional
representations of ECG signals [22]. Techniques like autoencoders and variational autoencoders
(VAEs) further enhance feature extraction, utilizing reconstruction error to detect unknown classes
[36] [37]. Similarly, one-shot and few-shot learning methods have been introduced to classify
unknown classes based on limited training examples [38]. These approaches leverage models like
Siamese Networks and Prototypical Networks, which measure similarity between samples to
identify unknown inputs effectively. Advanced classifiers specifically designed for open-set
recognition, such as OpenMax and Extreme Value Machines (EVMs), have also been introduced
[39] [40]. The OpenMax classifier extends traditional softmax layers in deep learning models to
recalibrate class probabilities, utilizing extreme value theory to model the tail distribution of
activation values [41] [42]. This approach significantly improves the system’s ability to reject
unknown inputs. EVMs take this further by reserving space for unknown classes in the feature
space, effectively modeling the distribution of known classes while accounting for the possibility
of encountering unseen data [43] [44] [45]. Hybrid approaches, which combine traditional and
deep learning techniques, offer another promising solution by integrating handcrafted features with
deep embeddings to enhance robustness and interpretability [46]. For example, fiducial points
extracted from ECG signals can be used alongside deep-learned representations to create a more
resilient classification system [47].

The conventional problem of OSR is intended to identify samples from given classes and at
the same time exclude samples from other unknown classes. The open set classifier is capable of
learning the decision planes for known classes and at the same time rejecting the unknown samples
with labels other than the training set labels outside the decision regions of the known classes. As
illustrated in Fig. 3, the unknown class samples will spread out in an area that is far from the
decision regions known as open space.
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Fig. 3. The practical performance of closed/open set identification

Method

The present systematic review has been conducted according to Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [48]. The literature research of
the current paper was carried out in Scopus and the IEEE Xplore databases. An overview of
literature search for this literature review is depicted in Fig. 4 and the process of literature search
for this literature review is a three staged process of identification, screening and inclusion.

Identification

During the identification stage of this review, the general search terms were developed
and used to search for related documents within Scopus, PubMed, and IEEE Xplore search engines
that function on the title, abstract, and/or keywords. The search terms included combinations of
keywords such as:

("biometric" OR "biometry") AND ("ECG" OR "Electrocardiogram" OR
"Electrocardiography" OR "Heart") AND ("Authentication" OR "Identification" OR
"Verification" OR "Recognition") AND ("Open-Set" OR "Closed-Set" OR "Classification" OR
"Feature Extraction") AND ("Signal Acquisition" OR "Data Collection" OR "Biosensor*" OR
"Electrode*" OR "Database*").*

Boolean operators AND and OR were used to ensure comprehensive coverage of relevant
studies. The initial search identified 312 papers. After removing 20 duplicate records, a total of
292 unique papers were identified for further processing.

Identification

To refine the selection of studies, a two-phase screening process was implemented,
combining automated filtering and manual evaluation to ensure relevance and quality. In the first
phase, predefined exclusion criteria were applied to narrow down the studies. Only studies
published between 2015 and 2024 were considered, which led to the exclusion of 62 papers.
Relevant subject areas were defined as computer science, engineering, healthcare, and decision
sciences, resulting in the exclusion of 48 papers from unrelated domains. To maintain a focus on
high-quality research, only peer-reviewed journal articles, conference papers, and systematic
reviews were included, excluding 15 studies such as editorials and non-peer-reviewed
publications. Additionally, only papers published in English were considered, which excluded a
further 7 studies written in other languages. After this automated filtering process, a total of 160
studies were excluded, leaving 132 papers for further analysis.

In the second phase, a manual screening process was conducted to ensure alignment with
the review’s objectives. Each study was carefully evaluated based on its title, abstract,
methodology, and findings sections. Studies were excluded if they did not focus on ECG-based
biometrics, which accounted for 25 exclusions, or if they exclusively addressed closed-set
recognition without discussing open-set scenarios, leading to the exclusion of 18 studies. A further
10 studies were excluded as they focused on non-biometric applications of ECG, such as medical
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diagnostics, while 9 studies were excluded for combining ECG with other biometric modalities
without emphasizing ECG-specific contributions. After this thorough manual screening process,
70 studies were retained for the inclusion phase.

Inclusion

In the final stage, 70 studies were included after the screening process. To enhance the
review, an additional 20 studies were added through backward citation searches, bringing the total
number of included studies to 90 papers, Fig. 5 shows the distributions of included papers over
years. These studies represent key contributions in signal acquisition, pre-processing, feature
extraction, and classification methods for ECG biometrics in open-set recognition scenarios. They
were sourced primarily from high-impact journals and conferences.

f = - .
= B enties: Records removed before
E =8k screeing: Duplicate records
= removed
= (n=20)
=

Records screened: Records excluded (n = 160)

(n=292)

Publication excluded due to:
1. Publication year before 2015
(n=62)

2. Not computer science,
engineering, healthcare
(n=48)

3. Not conference paper, article
nor review
(n=15)

4. Not in English
(n=7)

Full-text articles excluded

Reports assed for eligibility: ( 62)
n=

(n=132)

1. Not focus of ECG-based
biometrics
(n=25)

2. Exclusively addressed conly
clised-set recognition
(n=18)

3. Focusd on non-biometric
applications
(n=10)

4. Combined with other
modalities
(n=29)

(n=70) (n=20)

Reports assed for eligibility: ‘ Reports included manually:

Reports assed for eligibility:
(n=90)

Fig. 4. Flow diagram of the literature research process (adapted from Prisma Guidelines [49])
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Fig. 5. The annual distribution of included publications from 2015 to 2024

Research Questions

This systematic review focuses on addressing the following key research questions (RQs)
related to open-set recognition in ECG-based biometrics. Each question is designed to uncover
specific aspects of the topic, guiding the review and identifying areas for future research and
practical implementation.

RQ1: What are the main challenges in implementing open-set recognition for ECG biometric
systems? This question aims to systematically categorize the barriers hindering the effective
deployment of open-set ECG biometric systems, enabling a targeted approach to addressing these
issues.

RQ2: What methods and techniques have been proposed to address open-set challenges in ECG
biometrics? The goal of this question is to review existing methodologies, compare their
effectiveness, and identify innovative techniques that show promise in overcoming the identified
challenges.

RQ3: What role do signal acquisition, pre-processing, and feature extraction play in improving
ECG biometrics for open-set environments? This question seeks to evaluate how these components
contribute to the robustness and accuracy of ECG biometric systems and to identify best practices
for optimizing these processes.

RQ4: How can advanced technologies like deep learning and multimodal systems contribute to
open-set ECG biometrics? This question aims to explore the role of emerging technologies in
advancing ECG biometrics, focusing on how they can improve generalization, feature
representation, and decision-making in open-set contexts.

Results

Open-set recognition in ECG biometrics poses several challenges that hinder its
widespread adoption and real-world applicability [50]. This is one of the most crucial problems
since ECG is known to be a highly variable signal. For example, stress, physical activity, or a
change of position entails intra-individual variability which leads to variations that complicate the
classification of signals [15]. Additionally, inter-individual variability, which stems from
anatomical and physiological differences, further complicates the development of reliable models.
Environmental factors, including noise, electrode placement, and acquisition conditions,
exacerbate these issues, highlighting the need for robust techniques that can handle such variability
[51].

Another significant challenge lies in the generalization capabilities of existing classifiers.
Traditional models, such as k-Nearest Neighbors (k-NN) and Support Vector Machines (SVMs),
often fail to reject unknown inputs effectively, leading to high false acceptance rates [52][53].
While advanced classifiers like OpenMax and Extreme Value Machines (EVMs) show promise,
they still require further refinement to balance the trade-off between accurately identifying known

classes and rejecting unknown ones [54]. Moreover, the scarcity of diverse and standardized
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datasets limits the ability to train and evaluate these models. Existing datasets often lack
representation across different demographics, health conditions, and acquisition settings, making
it difficult to ensure the generalizability of developed systems [55].

The inadequacy of traditional evaluation metrics further complicates the development of
open-set recognition systems. Metrics such as accuracy and precision, which are widely used in
closed-set scenarios, fail to capture the system's ability to reject unknown classes. This further
emphasizes the need to use open-set specific measures including the Open-Set Identification Rate
(OSIR) and Generalized Accuracy.

Despite these challenges, several techniques have been proposed to address the limitations
of open-set recognition in ECG biometrics. Feature extraction methods have evolved from relying
solely on fiducial points, such as the R peak and QRS complex, to non-fiducial approaches that
leverage statistical and frequency-domain analysis. Hybrid techniques that combine both fiducial
and non-fiducial methods have demonstrated improved robustness and accuracy [56][57].
Advanced classifiers, including OpenMax and EVMs, are designed to handle unknown classes by
creating flexible decision boundaries. Deep learning models, such as Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs), have further enhanced classification
by learning complex, high-dimensional representations of ECG signals [58][59].

Data augmentation strategies, such as the use of Generative Adversarial Networks
(GANSs), have also played a vital role in addressing the lack of diverse datasets. By generating
synthetic ECG signals that simulate real-world variability, these methods enable models to
generalize better to unseen scenarios. The integration of these techniques has paved the way for
significant advancements in the field, although challenges remain in achieving consistent
performance across diverse conditions [60][61].

The applications and potential use of open-set ECG biometrics are numerous and
significant. In secure access systems, ECG biometrics can be considered as attractive solutions for
the access authentication in the secure environment because the false reject rate in the system is
close to zero. In healthcare, ECG-based identification facilitates secure access to patient records
and enhances the privacy of sensitive medical information. The integration of ECG biometrics into
IoT devices and wearables enables continuous authentication, providing personalized services
while maintaining user security [62][63]. In the financial sector, ECG biometrics are being
explored as a secure, contactless method for transaction authentication. Additionally, multimodal
systems that combine ECG biometrics with other modalities, such as facial recognition or
fingerprints, further enhance system reliability by leveraging the strengths of multiple traits
[15][64].

In conclusion, the outcomes of this review confirm the recent advances in the solutions
to the issues with the open-set recognition of ECG biometrics but stress the further potential
research. Application of modern approaches, such as hybrid solutions and deep learning models,
are being introduced as possible solutions, but these techniques’ performance relies heavily on the
obstacles posed by data shortages as well as the development of better methods to evaluate the
results of the methods. By addressing these gaps, ECG biometrics can be placed at the foundation
of sound authentication solutions in various fields. Table 3 provides various classification
techniques and their characteristics, showing how emerging classifiers can improve the
authentication under open-set recognition environments.

Table 3. Comparison of different classification techniques.

Classification
. Type Key Feature Applications
Technique yp y pp
k-NN predicts data based . .
- predicts da . k-NN is used in
on its tag similarity with . .

L2, biometric systems for
k-Nearest the majority class of the applications such as
Neighbors (k- Traditional nearest neighbors of data PP .\

. .. face recognition,
NN) using the training set and a . . .
. . fingerprint verification,
distance measure without : I,

. and gait recognition.

modeling.
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SVMs optimize class

Applications of SVM
in biometric systems

Support separation by maximizing include fingerprint
Vector . margins, excelling in high- . .
. Traditional . ) verification, face
Machines dimensional spaces for .
. . recognition, and other
(SVM) both linear and nonlinear . .. . .
biometric identification
tasks.
tasks.
. LDA i i
LDA projects data onto a oA sed in
) . . biometric systems for
Linear lower-dimensional space, L
. . applications such as
Discriminant . maximizing class "

. Traditional . o face recognition,
Analysis separability by optimizing fineerprint verification
(LDA) the ratio of between-class gerb . .

o . and disease diagnosis
to within-class variance. .
in healthcare
CNNs automatically learn Face recognition,
Convolutional features from images, fingerprint verification,
Neural Emerein handle spatial hierarchies, and multimodal
Networks Eing provide translation biometric systems that
(CNNs) invariance, and are robust combine different types
to variations in input data of biometric data
RNNs excel in
RNNSs use hidden states to biometric
Recurrent retain context from authentication, speech
Neural Emercin previous inputs, enabling recognition, ECG
Networks ging effective processing of biometrics, and
(RNNs) variable-length, sequential expression analysis by
data with feedback loops processing sequential
data effectively
OpenMax supports
iometri t lik
OpenMax replaces biometric systems 1ke
. face recognition and
softmax in neural . . )
. fingerprint verification,
OpenMax Emergin networks, using Extreme identifying known
p ging Value Theory (EVT) to iaentilymg kno
individuals while
detect unknown classes ..
s recognizing and
and compute probabilities. .
rejecting unknown
ones.
The Extreme Value EVM is applied in
Machine (EVM) applies biometric systems for
Extreme Value EVT for probabilities, face recognition and
Machines Emerging enabling open-set fingerprint verification,
(EVMs) classification and improving the accuracy
recognizing inputs from and scalability of open-
unseen classes effectively. set recognition tasks.
Conclusion

ECG-signature-based biometric authentication thus proposes a novel solution to secure
and accurate person identification based on the intrinsic and distinctive features of ECG signals.
However, actual applications are not limited to the closed-set identification; in the real-world
setting, it may be necessary for the system to perform open-set identification in which new subjects
or even imposters can appear. This review has outlined the design aspect, problem, and possible
solution of ECG biometric systems in such a dynamic environment. The transition from closed-
set to open-set recognition triggers the following challenges — variability in ECG signal,
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generalization of classifiers to unseen subjects, and the constraints of existing datasets and
assessment methodologies. Insights have revealed that other essential features include the use of
sophisticated classifier architectures, deep learning algorithms, aspects of data augmentation, and
features engineering as helpful in overcoming these challenges. Additionally, ECG biometrics
together with multimodal systems and real-time applications, can be improved in terms of
robustness and scalability. Despite the progress made, significant gaps remain in open-set ECG
biometrics. The future work should focus on the improvement of adaptive classifiers, the
establishment of unified and assorted databases, as well as the investigation of novel technologies
including blockchain and IoT. Questions of ethical and legal nature like data privacy violation and
tendency in following the legalities that govern such systems must also be talked of to support
responsible use of these systems. Thus, ECG biometrics might be used effectively to meet the
emerging challenge of developing efficient and flexible systems for personal identification and
authentication. The opportunities identified and discussed in this review shall be pursued to assist
the researchers and practitioners to overcome some of the difficulties outlined above and develop
solutions that can lead to better systems that operate effectively in open-set conditions. These
enhancements will help in redefining the use of ECG biometric systems from the Healthcare and
IoT sector to financial securities and Critical Infrastructure.
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