К вопросу о проецировании

On the question of projection

Сальков Н.А.

Канд. техн. наук, профессор кафедры архитектуры Московского государственного академического художественного института имени В.И. Сурикова e-mail: nikolaysalkov@mail.ru

Salkov N.A.

PhD in Engineering, Professor of the Department of architecture, Moscow State Academic Art Institute named after V. I. Surikov e-mail: nikolaysalkov@mail.ru

Аннотация

В статье обсуждаются вопросы, связанные с самым началом начертательной геометрии, а именно – с процессом проецирования. Рассматриваются случаи, когда этого процесса не может быть при получении изображений: например, при разработке изобретений. Делается соответственный подбор примеров, а автор приходит к совершенно удивительному выводу.

Ключевые слова: начертательная геометрия, проецирование, высшее профессиональное образование, черчение.

Abstract

The article discusses issues related to the very beginning of descriptive geometry, namely, the projection process. Cases are considered when this process cannot occur when obtaining images: for example, when developing inventions. An appropriate selection of examples is made, and the author comes to an absolutely amazing conclusion.

Keywords: descriptive geometry; projection; higher professional education; drawing.

Как получается изображение — об этом повествует начертательная геометрия [1; 5; 6], являющаяся собственно теорией их получения. Однако не все так просто. Метод начертательной геометрии — метод проекций — зачастую не проявляется в явном виде как это имеет место в фотоделе, в кино, в различных медицинских аппаратах: рентгеновских, ультразвуковых исследованиях и др. Очень часто метод проецирования проявляется опосредованно, и иногда даже можно усомниться в его присутствии.

Метод проецирования заключается в том, что через каждую точку геометрической фигуры – имеющегося объекта – проводятся проецирующие лучи, которые, пересекаясь с поверхностью проекций (плоскостью, цилиндром вращения, сферой и т.д.), дают проекции этих точек (их изображения), а совокупность всех проекций точек геометрической фигуры дает проекцию (изображение) этой фигуры.

Рассмотрим, что же получается на практике.

А на практике, кроме, как уже было сказано, в фотоделе и кино, никогда никто не проецирует какой-либо рассматривающийся объект на плоскость или другую поверхность.

Как действуют инженеры, технологи, архитекторы и другие творческие специалисты, чтобы получить чертеж того или иного объекта машиностроения, сооружения, изделия, изобретения? Или в других областях творчества? Все они

свои разработки представляют исключительно мысленно. Нельзя мысленный образ спроецировать непосредственно на лист бумаги или экран монитора. Да и в любом деле, например, в строительстве невозможно произвести непосредственное проецирование на небольшой по сравнению со строительным объектом простотаки клочок бумаги.

Возьмем, например, Останкинскую телебашню. Даже сейчас, когда она имеется в натуре, невозможно непосредственно ортогонально спроецировать ее на плоскость. Как может поместиться 540 метров на бумаге, какой площадью в квадратных метрах должен быть этот «листочек»? Поэтому и существует масштабирование. Но масштабирование — это совсем не проецирование непосредственно, каковое имеет ввиду учебник по начертательной геометрии. Сфотографировать башню, получить ее перспективное изображение — это можно, стоит только подальше отойти с фотоаппаратом, чтобы башня вся поместилась на электронную матрицу или кадр на фотопленке, но это не даст ортогонального проецирования и на этой основе возможности выполнения рабочих чертежей, по которым можно будет построить башню, хоть перспектива и является одним из разделов начертательной геометрии.

Таким образом, Николай Васильевич Никитин, автор Останкинской телебашни, осуществлял свою задумку, применяя масштабирование, а это совсем не тот способ, который приводится на первых страницах каждого учебника начертательной геометрии: там, в учебниках все изображения получаются в масштабе 1:1 и только потом, не разъясняя, как это происходит, применяют масштабирование как само собой разумеющееся, хотя на самом деле происходит геометрическое преобразование: геометрическая фигура сначала теряет свои натуральные размеры и уменьшается или увеличивается, а потом уже мы ее проецируем на плоскость.

Но и это не все нюансы. Как Никитин все это проектировал, если башни-то в природе не существовало, что же проецировать? Парадокс: этого еще нет, но это уже спроецировано; башни нет, а чертежи ее уже есть. Совсем не так, как толкуют в учебниках. Как можно спроецировать несуществующее?

А если взять построение точки по ее координатам? Тоже ведь не совсем очевидная процедура, не соответствующая картинкам из учебников, когда точка уже задана в системе трех плоскостей проекций, и имеются проецирующие ортогональные лучи.

Давайте разбираться.

Мозг человека — замечательное изобретение природы, удивительный инструмент: если даже чего-то нет в природе, он — мозг человека — это что-то обязательно выдумает и представит себе как существующее. И это, существующее только в мыслях, в воображении, спроецирует на плоскость — опять-таки мысленно.

Так появляются все чертежи, так появляется абсолютно любое изображение, в основном, в результате формирования в головном мозге этого изображения. То есть, без непосредственного использования операции проецирования. Тем не менее, воображая себе мысленно то, что затем переносится на двумерный носитель, человек, осознанно или интуитивно, работает с проекционным аппаратом, хоть и не использует его в материальном виде, т.е. непосредственно. Мысленно — да, непосредственно — нет.

Так поступает любой инженер, любой изобретатель, любой художник, если не находится на пленэре. Даже писатель, описывая прелести природы, сначала представляет себе их мысленно. К слову сказать, все буквы имеют проекционный характер [3; 9]. Об этом позднее.

Таким образом, чтобы быть в полной мере созидателем, творцом, необходимо обладать как пространственным представлением, так и

пространственным воображением [2]. Напомню, что пространственное представление — это психический процесс [2], являющийся первой ступенью в творческом процессе, состоящий в создании определенного образа предмета или явления, ранее воздействовавшего на органы чувств человека. Так, рассматривая чертеж, можно представить сам объект мысленно. А пространственное воображение — это психический процесс, состоящий в создании новых образов на основе переработки прошлых восприятий. То есть пространственное воображение — это более высокий уровень мышления, позволяющий назвать человека созидателем, придумывать то, что еще не существует.

Начертательная геометрия развивает и то, и это: и пространственное представление, и пространственное воображение, особенно при участии студентов в местных и Российских олимпиадах [7]. Таким образом, начертательная геометрия готовит будущего инженера, технолога, архитектора и т.д. к творчеству. Скорее всего, именно поэтому начертательная геометрия в дореволюционной России (до 1917 г.) была одной из основных дисциплин реальных училищ, готовящих своих выпускников в технические вузы [4].

Хочу напомнить: начертательная геометрия — это наука, разрабатывающая и исследующая способы отображения одного пространства на другое. Именно **способы**, а не один-единственный способ, как считают многие, прочитавшие учебник по начертательной геометрии и имеющие представление только о единственном пучке проецирующих лучей, хоть он и является основным [1; 6] и по мнению проф. С.А. Фролова [9] присутствует всюду, где имеются изображения. Мы же с этим утверждением полностью согласны [3].

Поскольку проецирование (отображение одного пространства на другое) может вестись мысленно, то и результат этого отображения может получиться непредсказуемым. Одно дело, когда проектировщик-конструктор, архитектор, изобретатель выполняют отображения, получая чертежи и эскизы по четким правилам, закрепленным в ЕСКД и СПДС, и совсем другое, если за отображение существующего в их головах пространства берутся люди, очень эмоциональные и плохо знающие (или совсем не) правила выполнения чертежей. Тут можно получить до такой степени непонятное отображение чего-либо, что, кроме как абстракционизмом, назвать получившееся невозможно.

Например, на рис. 1 показано известное полотно знаменитого художника Василия Кандинского.

Рис. 1.

Вот кто, не знакомый с подобным течением в живописи, сможет ответить на простой вопрос: «Что здесь изображено?».

Никто не сможет, даже автор не смог, поскольку назвал сей шедевр «Композиция 5».

А возьмем другого «классика»: Пабло Пикассо с его живописью, образец

которой представлен на рис. 2.

Рис. 2.

Что или кто изображен на этом полотне? И что он (она, оно) делает? Кошка на руках у джинна? Или женщина с кошкой и опять же на руках у джинна, дегустирующие втроем абсент?

Можно сделать печальный вывод о том, что для некоторых художников психический процесс под названием пространственное воображение оказался непосильным для неокрепшей (или подорванной) психики.

Рассматривая любые изображения, включая буквы, иероглифы, клинопись, на чертежах, на рисунках, на картинах и в любом тексте, можно увидеть, что все они состоят из определенного набора точек, линий и отсеков поверхностей без исключения. То есть всё, что можно увидеть на двумерном носителе, имеет единую природу. Кстати, буквы первоначально были рисунками [8] и только со временем превратились в соответствующие знаки. На рис. 3 показано превращение изображения быка (алефа) в первую букву сначала финикийского, а затем – греческого, латинского и русского алфавитов.

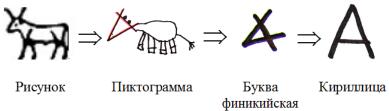


Рис. 3.

Достаточно сказать, что любые, не оригинальные, т.е., не являющиеся прообразами фигуры, являются образами, другими словами — моделями — в том или ином приближении к оригиналу.

Опираясь на мнения уже ушедших от нас классиков прикладной геометрии (Н.Н. Рыжова, С.А. Фролова, Н.А. Соболева, Н.Ф. Четверухина, В.С. Левицкого,

А.М. Тевлина, В.Е. Михайленко, А.Л. Подгорного, А.В. Бубенникова, В.А. Пеклича и мн. др.), повторю уже высказанное нами однажды суждение [3]:

«Как только кто-то берет в руки карандаш, ручку, кисть, резец, прибор для выжигания, компьютер, планшет – он всегда, вольно или невольно будет заниматься начертательной геометрией, независимо от того, хочется ему это или нет».

Литература

- 1. Гордон В.О. Курс начертательной геометрии [Текст] / В.О. Гордон, М.А. Семенцов-Огиевский. М.: Наука, 1977. 368 с.
- 2. 17. *Рыжов Н.Н.* Начертательная геометрия (понятия, их определения и пояснения) [Текст] / Н.Н. Рыжов. М.: Изд-во МАДИ, 1993. 60 с.
- 3. 23. *Сальков Н.А*. Истоки становления начертательной геометрии [Текст] / Н.А. Сальков // Геометрия и графика. 2021. Т. 9. № 3. С. 3–11. DOI: 10.12737/2308-4898-2021-9-3-3-11.
- 4. 96. *Сальков Н.А*. Начертательная геометрия до 1917 года [Текст] / Н.А. Сальков // Геометрия и графика. 2013. Т. 1. № 2. С. 18–20. DOI: 10.12737/780.
- 5. Сальков Н.А. Начертательная геометрия: базовый курс [Текст]: Учеб. пособие. М.: ИНФРА-М, 2019. 184 с.
- 6. 30. Сальков Н.А. Начертательная геометрия теория изображений [Текст] / Н.А. Сальков // Геометрия и графика. 2016. Т. 4. № 4. С. 41— 47. DOI: 10.12737/22842.
- 7. 98. *Сальков Н.А*. Олимпиады по начертательной геометрии как катализатор эвристического мышления [Текст] / Н.А. Сальков [и др.] // Геометрия и графика. 2017. Т. 5. № 2. С. 93–101. DOI: 10.12737/article 5953f3767ble80.12067677.
- 8. 32. Соболев Н.А. Общая теория изображений. М.: Издательство «Архитектура-С», 2004.-672 с.
- 9. 37. *Фролов С.А*. В поисках начала: Рассказы о начертат. геометрии [Текст] / С.А. Фролов, М.В. Покровская. Мн.: Выш. школа, 1985. 189 с.